Correctness of Algorithms

Stefan D. Bruda

CS 317, Fall 2025

CORRECTNESS OF ITERATIVE ALGORITHMS

- For this course we establish correctness semi-formally
 - Rigorous correctness argument, but not necessarily formulated in a formal logic framework
- Establishing the correctness of sequences of statements is generally easy
 - A simple argument that walks through the code usually suffices
- Establishing the correctness of loops is best done by coming up with a loop invariant
 - Can choose some place in the loop (usually either the beginning or the end of the loop code) where the invariant is always true
 - The invariant must imply the desired property of the output (at the end of the loop)
 - That the invariant is indeed an invariant can be proven by induction over the number of the current iteration
 - Prove that the invariant is true at the start of the loop (Iteration 0)
 - Assume that the invariant is true at iteration k and then prove that it is also true at iteration k + 1
 - Make sure that the invariant establishes the desired correctness at the end of the loop

INVARIANT EXAMPLE

algorithm BINSEARCH(x, S, I, h):

```
||S_{l...h}| is a sorted sequence i \leftarrow l j \leftarrow h while i \leq j do ||m \leftarrow (i+j)/2| if S_m = x then return m else if S_m > x then j \leftarrow m-1 else i \leftarrow m+1
```

Need to show that for return r:

$$S_r = x \lor r = -1 \land x \notin S_{l...h}$$

• Loop invariant, true at the beginning of every iteration:

$$S_{(i+j)/2} = x \lor x \notin S_{1...i-1} \land x \notin S_{j+1...h}$$

- Clearly $x \notin S_{l...i-1} \land x \notin S_{j+1...h}$ holds for i = l and j = h so the invariant is true at the start of the loop
- If $S_{(i+i)/2} = x$ then the loop terminates (there is no next iteration)
- Otherwise $(x \notin S_{l...i-1} \land x \notin S_{j+1...h}$ is true):
 - If $S_{m=(i+j)/2} > x$ then $S_{m...j} \ge S_m > x$ and so $x \notin S_{m...h} \land x \notin S_{l...i-1}$ This shows that the invariant is true at the next iteration since $j \leftarrow m-1$
 - If $S_{m=(i+j)/2} < x$ then $S_{l...i} < S_m < x$ and so $x \notin S_{i...m} \land x \notin S_{j+1...h}$ This shows that the invariant is true at the next iteration since $j \leftarrow m+1$
- How the invariant establishes correctness when the loop terminates:
 - If r == -1 then i > j so $x \notin S_{l...l-1} \land x \notin S_{l+1...l}$ implies $x \notin S_{l...l}$
 - Otherwise **return** m was executed, so $S_m = x$, and so $S_r = x$

Correctness of Algorithms (S. D. Bruda)

return -1

CS 317, Fall 2025

2 / E

CORRECTNESS OF RECURSIVE ALGORITHMS

- Correctness of recursive algorithms best established using the following particular case of structural induction
- To establish the property $\mathcal{P}(f(x))$ for a recursive function f:
 - Base case: Establish that $\mathcal{P}(f(x))$ holds for all the fixed point(s) (non-recursive case(s)) of f
 - Inductive step: Establish that $\mathcal{P}(f(x))$ holds for all the recursive case(s) of f under the inductive hypothesis that $\mathcal{P}(f(x'))$ is true for all the recursive calls f(x') within f
- Technically a structural induction over the recursion tree
 - Also a mathematical induction over the depth of the recursion tree
 - Note in passing: Recursion tree of f(x):
 - Nodes labeled with f(x)
 - Node f(x) is the parent of f(x') iff f(x') is (recursively) called from within f(x)
 - Leafs are nodes with no recursive calls (fixed points)

EXAMPLE OF STRUCTURAL INDUCTION


```
algorithm BINSEARCH(x, S, I, h):

if I > h then return -1

else

m \leftarrow (I+h)/2
if x == S_m then return m
else if x < S_m then
return \ BINSEARCH(<math>x, S, I, m-1)
else return BINSEARCH(x, S, m+1, h)
```

Need to show that for return r:

$$S_r = x \vee r = -1 \wedge x \notin S_{l...h}$$

- Base case: l > h, so the range $S_{l...h}$ is empty, and so $x \notin S_{l...h}$; it is also the case that r = -1, as desired
- Inductive hypothesis: The property holds for BINSEARCH(x, S, I, m-1) and BINSEARCH(x, S, m+1, h)
- Inductive step:
 - If $S_m = x$ then the appropriate value (m) is returned
 - If $x < S_m$ then $x \notin S_{m...h}$ (see earlier) and so x can only be in $S_{l...m-1}$ The call BINSEARCH(x, S, l, m-1) will then return the correct r by induction hypothesis
 - If $x > S_m$ then $x \notin S_{l...m}$ (again see earlier) and so x can only be in $S_{m+1...h}$ The call BINSEARCH(x, S, m+1, h) will then return the correct r by induction hypothesis

Correctness of Algorithms (S. D. Bruda)

CS 317, Fall 2025

1 / E

ANOTHER EXAMPLE OF STRUCTURAL INDUCTION


```
algorithm MERGESORT(S, I, h):

if I > h then

m \leftarrow (I+h)/2

MERGESORT(S, I, m)

MERGESORT(S, m+1, h)

MERGE(S, I, m, h)
```

- Need to show that when MERGESORT(S, I, h) returns the sequence S_{I...h} is sorted
 - Additional assumption: If the sequences $S_{l...m}$ and $S_{m+1...h}$ are sorted before the call MERGE(S_l , m, h), then the sequence $S_{l...h}$ is sorted after that call
- Base case: $l \ge h$ means that $S_{l...h}$ holds at most one value so it is already sorted
- Inductive step:
 - Before the call to MERGE the sequences $S_{l...m}$ and $S_{m+1...h}$ are sorted by induction hypothesis
 - Therefore MERGE will return a sorted sequence $s_{l...h}$