DiviDE AND CONQUER

Idea: algorithm MERGE(S, /, m, h):
. T + /I merge placeholder
Q Ifthe problem is small enough, then i ,<> /,%oppof first half
solve it je—m // top of second half
fear k<« | /[top of T
. @ Otherwise: ol .
Divide and Conquer iy . while /< m A j < hdo
@ Divide the problem into two or more if S; < S then // compare top
sub-problems Ty < S; // smallerin T
@ Solve each sub-problem recursively e it // advance top
; ; else
Stefan D. Bruda © Combine the solutions to the To—S /smallerin T
ts#b-pllrolbleps tglobtaln a solution to L e+ // advance top
e original problem ke ki
Example: while i < mdo // flush first half
CS 317, Fall 2024 algorithm MERGESORT(S, /, h): Tk S
if | < hthen P 'k+ ;
m« (I + h)/2 // divide L ke kA
MERGESORT(S, I, m) // conquer while j < hdo /l flush second half
MERGESORT(S, m+1, h) // conquer Tk <_-Si1
i I
MERGE(S, I, m, h) /I combine kK
for k = /to hdo //result back into S
L Sk« Tk
Divide and Conquer (S. D. Bruda) CS317,Fall2024 1/13

MERGESORT ANALYSIS

MERGESORT ANALYSIS (CONT’D)

Lemma (correctness of MERGE) @ T(n)=2T(n/2)+n, T(1) =1so T(n) = O(nlogn) — already known!

If S m and Sm.1.. are sorted then at the end of MERGE the sequence T, Theorem (comparison sorting lower bound)
contains a sorted permutation of S,

The lower bound for comparison sort algorithms is Q(nlog n)

@ Loop invariant (for all three loops): T, x_1 is sorted and contains exactly

allthe k — 1 smallest elements of 5. e Internal node S;; represents a comparison between S; and S;

@ Proof by induction over k S _ o The left [right] sub-tree represents all the decisions to be made provided that
@ At the end of the loop k = h+ 1 and so the invariant implies the desired S <SS > S]

properties of T o Each leaf labeled with a different permutation of S
e Following a path performs the sequence of comparison given by the
sequence of nodes and produces the leaf permutation of S

@ We count comparisons using a decision tree

Theorem (correctness of MERGESORT)

that sequence contains log(n!) = ©(nlog n) nodes
@ So a sorting algorithm must perform Q(nlog n) comparisons to
@ Proof by induction on h — /: differentiate between all the possible permutations
o In the base case h — | = 0 MERGESORT (correctly) does nothing
o To sort h— | values MERGESORT sorts correctly (h — /)/2 values two times Corollary (optimality of MERGESORT)

(inductive hypothesis) and then correctly merges the two sub-sequences

(lemma), thus obtaining a sorted permutation of the original sequence HEREESORT 05 Epitime

Divide and Conquer (S. D. Bruda) CS 317, Fall 2024 2/13 Divide and Conquer (S. D. Bruda) CS 317, Fall 2024 3/13

QUICKSORT

ANALYSIS OF QUICKSORT

@ Problem with MERGESORT: require substantial extra space
@ By contrast QuickSort is an in-place sorting algorithm

algorithm QUICKSORT(S, /, h):
if | < hthen
Choose pivot Sy

1 <> Ox
p <+ PARTITIONSS, 1, h)
QUICKSORT(S, I, p— 1)
QUICKSORT(S, p+ 1, h)

algorithm PARTITION(S, /, h): // ver. 1 algorithm PARTITION(S, /, h): // ver. 2
pivot < S; pivot < S;
J i1
fori=/+1to hdo j+ h+1 /I start beyond ends
repeat

repeat /i < i+ 1 until S; > pivot:
repeat j < j—1 until S; < pivot:
ifi<jthen S; < S;
until / > j:
S/ <~ S]
return j

if S; < pivotthen
j—Jj+1
i < S
S/ <~ S]
| returnj

Divide and Conquer (S. D. Bruda) CS 317, Fall 2024 4/13

LINEAR-TIME SELECTION

@ Time complexity:
o Best case: we always partition equally
T(n)=2T(n/2)+n, T(1) =1and so T(n) = ©(nlogn)
o Worst case: one partition is always empty (when?)
T(n)=T(n—1)+n, T(1) =1and so T(n) = ©(n?)
o Can mitigate (but not fix) the worst case by choosing the pivot randomly of
the best out of k random values for a small constant k
@ QuickSort is not stable
@ Correctness of PARTITION:
o Loop invariant for version 1: At the end of an iteration all values S;+..; are
smaller than pivot and no value Si.1..; is smaller than pivot
o Can verify by induction over i
e Invariant implies desired postcondition that everything in S;.. ,_1 is less than
pivot and nothing in Sp.1...p is less than the pivot
o Loop invariant for version 2: At the end of an iteration all values in Sy1.; are
smaller than the pivot and no values in S;..., are smaller than the pivot
o Can verify by induction over the iteration number

@ Correctness of QUICKSORT: same as for MERGESORT (induction over
h—1)

Divide and Conquer (S. D. Bruda) CS317,Fall2024 5/13

HOw TO CHOOSE GOOD PIVOTS

@ We use the QuickSort idea to find the k-th smallest value in a given array,
without sorting the array:

algorithm QUICKSELECT(k, S, I, h):

if / < hthen

Choose pivot S
1 <> Sx

p < PARTITION(S,/, h
if kK = p then return S;
else if Kk < pthen QUICKSELECT(k, S,/,p—1)
else QUICKSELECT(k, S,p+1,h)

@ Correctness: just like for QUICKSORT
@ Time complexity:
o Best case: we always partition equally
T(n)=T(n/2)+ n, T(1) =1 and so T(n) = ©(n) (better than sorting)
o Worst case: one partition is always empty
T(n)=T(n—1)+n, T(1) =1andso T(n) = ©(n?)

Divide and Conquer (S. D. Bruda) CS317,Fall2024 6/13

algorithm MOMSELECT(k, S, /, h):
if h — | < 25 then use brute force
else
m« (h—1)/5
fori=1tomdo
M; <— MEDIANOFFIVE(S 5/_4...14+5;) // brute force
/I Note: M can and should be an in-place array (within S)

mom <+ MOMSELECT(m/2, M, 1, m)

Sy < Smom

p < PARTITION(S, /, h

if Kk = p then return Sy

else if kK < pthen MOMSELECT(k, S,/,p—1)
else MOMSELECT(k, S,p+ 1, h)

@ Obviously correct (why?)

@ momis larger [smaller] than about (h — /)/10 block-of-five medians

@ Each block median is larger [smaller] than 2 other elements in its block

@ So mom is larger [smaller] than 3(h — /)/10 elements in S and so cannot
be farther than 7(h — 1) /10 elements from the perfect pivot

@ SoT(n)=T(n/5)+ T(7n/10)+n=T(n)=10xcx n= T(n)=06(n)

e Note in passing: T(n) = T(n/3)+ T(2n/3) + n= T(n) = ©(nlogn)

@ If QUICKSORT uses MOMSELECT to choose pivot then it gets down to

O(nlog n) worst-case complexity (optimal)

Divide and Conquer (S. D. Bruda) CS317,Fall2024 7/13

Divide and Conquer (S. D. Bruda)

Divide and Conquer (S. D. Bruda)

FAST MATRIX MULTIPLICATION

With A and B n x n matrices compute C = A x B such that
Ci,/ = 22—1 Ai,k X Bk,j

@ Straightforward algorithm of complexity O(n®)

@ Obvious lower bound Q(n?)

@ Divide and conquer approach:

(A<—TA—>T)X<B<—TB—>T>:<C<—TC—>T)
A<—¢ ‘ A—>¢ B<—¢ ‘ B—>¢ C<—¢ ‘ C—>¢
algorithm MATRIXMuUL(n, A, B):

if n = 2 then return A x B (brute force)
else

Partition Ainto A1+, A4+, A, A,

Partition Binto B, +,B_,4,B,B_,

Ct + MATRIXMUL(n/2, A+, B1)-+MATRIXMUL(n/2, A4, B)
C_,t < MATRIXMUL(n/2, A+, B_y4+)+MATRIXMUL(n/2,A_,1, B,)
C | < MATRIXMUL(n/2, A, B4)+MATRIXMUL(n/2,A_,|,B_,})
C_, | < MATRIXMUL(n/2,A_ |, B_,4+)+MATRIXMUL(Nn/2,A_,|,B_;})
Combine C+,C_4,C—,C_, into C

return C

@ T(n)=8T(n/2)+n?, T(2) =8 = T(n)= O(n®) (bummer!)

CS 317, Fall 2024

LARGE INTEGER MULTIPLICATION

Manipulate big integers — represented by arrays of n digits
@ Obvious lower bound for addition and multiplication: Q(n)
@ The straightforward algorithms are optimal for addition (O(n)) but not
necessarily for multiplication (O(n?))
@ Divide and conquer approach:
o Let uand v be two n-digit integers

o Letm=n/2andletu=xx10"+yandv=w x 10"+ z
o It follows that

8/13

uxv=(xx10"+y)(w x 10" + z) = xw x 10®™ 4 (xz + yw) x 10" 4 yz

algorithm INTMUL(n, u, v):
m<« n/2
ifu=0Vvv=0then return0
else if n=2then returnu x v
else
X < u DIV 10T
Yy < UREM 107
w <+ v DIV 107
Z < V REM 107
return INTMUL(m, x, w) x 102™
+(INTMUL(m, x, Z)
+INTMUL(m, y, w)) x 10™
+INTMUL(m, ¥, Z)

@ Running time:
T(n)=4T(n/2) + n,
T(2)=4

// most significant m digits @ Complexity: O(n?)

/I least significant m digits

CS 317, Fall 2024 10/13

Divide and Conquer (S. D. Bruda)

Divide and Conquer (S. D. Bruda)

@ To improve complexity we try to compute C.+, C_,+, C, C_, using less

than 8 matrix multiplication operations
@ Strassen’s definitions:

P=(Act +A1)(Bey +B)) 80
(Ast +A)Bey
Ac4(Bo1—B))

A (Bo1—Bet)
(
(
(

Cor=P+S-T+V
C—>T =R+T
C—>T =Q+S
C—>J, =P + R— Q+ U
At +A1)B,
A=A 1) (Bt + Boit)

—1=AL)(Botr + Boy)

@ Only 7 multiplication operations!
@ T(n)=7T(n/2)+n? T(2) =8 = T(n) = O(n") = O(n>8")

o Subsequent algorithms were able to bring complexity down to O(n
@ Trick used: split into fewer (but less obvious) sub-problems

2.373)

CS 317, Fall 2024

LARGE INTEGER MULTIPLICATION (CONT’D)

@ Improvement:

o Letpr=xw,po=yz,ps = (x+ y)(w+ 2)
e Thenps — p1 — po = (X + y)(W + Z2)-xw—yz = XZ + yw
@ Thenp=(xx 10"+ y)(w x 10"+ z) =
xw x 10%™ 4 (xz 4 yw) x 10™ + yz = p;10°™ 4 (p3 — p1 — p2)10™ + p2

algorithm FASTMuUL(n, u, v):

m< n/2
ifu=0Vvv=0then return0 T(n)=3T(n/2) + n,
else if n =2 then

L returnux v T(2)=4

else o Complexity:
X < uDIvi10™ O(n'°e3) — O(n'58
Yy < uREM 107 () ()
w <+ v DIV 107
Z + v REM 107
p1 = FASTMUL(m, x, w)
po = FASTMUL(m, y, Z)
p3 = FASTMUL(m, X +y,w + 2)
return p;10%™ + (p3 — p1 — p2)10™ + p?

@ Running time:

9/18

CS 317, Fall 2024 11/13

TROMINO TILING -l WHEN TO USE DIVIDE AND CONQUER

Tile a bathroom floor (“board”) with trominos without cover-
ing the drain (designated square on the board)

algorithm TILE(B, n, L): // Bis the n x nboard, L is the drain location .. .
9 it n :_gth_én) o . H @ Divide and conquer does not work for everything
|L Tile with one tromino without covering L @ The crux of the technique is the ability to divide a problem into-sub
else
Divide Binto 4 n/2 x n/2 sub-boards By, ..., Bs problems
Eéiﬁglggom'”o 10 cover one square on each board that does ot Tromino ll @ Therefore divide and conquer is not the right thing to do when:
Let Ly, ... L4 be the squares on each sub-board that are either o The size of sub-problems is the same (or larger) than the size of the original
covered or L problem
for ’.ﬁul(tg ‘}1720L-) " @ Example: initial version of matrix or integer multiplication
L P @ Dramatic example: computing Fibonacci numbers

@ When the process of splitting into sub-problems takes too much time
o When the process of combining the sub-solutions takes too much time

Running time/trominoes used:
@ T(n)=4T(n/2)+1,T(2) =1
o T(n)=1/3(mP—1) 15t Tromino to be placed
@ Much better than the trial and error approach

Divide and Conquer (S. D. Bruda) CS 317, Fall 2024 12/13 Divide and Conquer (S. D. Bruda) CS 317, Fall 2024 13/13

