
Divide and Conquer

Stefan D. Bruda

CS 317, Fall 2024

DIVIDE AND CONQUER

Idea:
1 If the problem is small enough, then

solve it
2 Otherwise:

1 Divide the problem into two or more
sub-problems

2 Solve each sub-problem recursively
3 Combine the solutions to the

sub-problems to obtain a solution to
the original problem

Example:
algorithm MERGESORT(S, l , h):

if l < h then
m← (l + h)/2 // divide
MERGESORT(S, l , m) // conquer
MERGESORT(S, m + 1, h) // conquer
MERGE(S, l , m, h) // combine

algorithm MERGE(S, l , m, h):
T ← ⟨⟩ // merge placeholder
i ← l // top of first half
j ← m // top of second half
k ← l // top of T
while i ≤ m ∧ j ≤ h do

if Si < Sj then // compare top
Tk ← Si // smaller in T
i ← i + 1 // advance top

else
Tk ← Sj // smaller in T
i ← j + 1 // advance top

k ← k + 1
while i ≤ m do // flush first half

Tk ← Si
i ← i + 1
k ← k + 1

while j ≤ h do // flush second half
Tk ← Sj

j ← j + 1
k ← k + 1

for k = l to h do // result back into S
Sk ← Tk

Divide and Conquer (S. D. Bruda) CS 317, Fall 2024 1 / 13

MERGESORT ANALYSIS

Lemma (correctness of MERGE)
If Sl...m and Sm+1...h are sorted then at the end of MERGE the sequence Tl...h
contains a sorted permutation of Sl...h

Loop invariant (for all three loops): Tl...k−1 is sorted and contains exactly
all the k − 1 smallest elements of Sl...h

Proof by induction over k
At the end of the loop k = h + 1 and so the invariant implies the desired
properties of T

Theorem (correctness of MERGESORT)
MERGESORT replaces any input sequence Sh..l with a sorted permutation of
that sequence

Proof by induction on h − l :
In the base case h − l = 0 MERGESORT (correctly) does nothing
To sort h − l values MERGESORT sorts correctly (h − l)/2 values two times
(inductive hypothesis) and then correctly merges the two sub-sequences
(lemma), thus obtaining a sorted permutation of the original sequence

Divide and Conquer (S. D. Bruda) CS 317, Fall 2024 2 / 13

MERGESORT ANALYSIS (CONT’D)
T (n) = 2T (n/2) + n,T (1) = 1 so T (n) = Θ(n log n) → already known!

Theorem (comparison sorting lower bound)
The lower bound for comparison sort algorithms is Ω(n log n)

We count comparisons using a decision tree
Internal node Si,j represents a comparison between Si and Sj

The left [right] sub-tree represents all the decisions to be made provided that
Si ≤ Sj [Si > Sj ]
Each leaf labeled with a different permutation of S
Following a path performs the sequence of comparison given by the
sequence of nodes and produces the leaf permutation of S

We have n! permutations (leafs) so the minimum path from root to a leaf
contains log(n!) = Θ(n log n) nodes
So a sorting algorithm must perform Ω(n log n) comparisons to
differentiate between all the possible permutations

Corollary (optimality of MERGESORT)
MERGESORT is optimal

Divide and Conquer (S. D. Bruda) CS 317, Fall 2024 3 / 13



QUICKSORT

Problem with MERGESORT: require substantial extra space
By contrast QuickSort is an in-place sorting algorithm
algorithm QUICKSORT(S, l , h):

if l < h then
Choose pivot Sx
S1 ↔ Sx
p ← PARTITION(S, l, h)
QUICKSORT(S, l , p − 1)
QUICKSORT(S, p + 1, h)

algorithm PARTITION(S, l , h): // ver. 1
pivot← Sl
j ← l
for i = l + 1 to h do

if Si < pivot then
j ← j + 1
Si ↔ Sj

Sl ↔ Sj
return j

algorithm PARTITION(S, l , h): // ver. 2
pivot← Sl
i ← l
j ← h + 1 // start beyond ends
repeat

repeat i ← i + 1 until Si > pivot:
repeat j ← j − 1 until Sj < pivot:
if i < j then Si ↔ Sj

until i > j :
Sl ↔ Sj

return j

Divide and Conquer (S. D. Bruda) CS 317, Fall 2024 4 / 13

ANALYSIS OF QUICKSORT

Time complexity:
Best case: we always partition equally
T (n) = 2T (n/2) + n, T (1) = 1 and so T (n) = Θ(n log n)
Worst case: one partition is always empty (when?)
T (n) = T (n − 1) + n, T (1) = 1 and so T (n) = Θ(n2)
Can mitigate (but not fix) the worst case by choosing the pivot randomly of
the best out of k random values for a small constant k

QuickSort is not stable
Correctness of PARTITION:

Loop invariant for version 1: At the end of an iteration all values Sl+1...j are
smaller than pivot and no value Sj+1...i is smaller than pivot
Can verify by induction over i
Invariant implies desired postcondition that everything in Sl...p−1 is less than
pivot and nothing in Sp+1...h is less than the pivot
Loop invariant for version 2: At the end of an iteration all values in Sl+1...i are
smaller than the pivot and no values in Sj...h are smaller than the pivot
Can verify by induction over the iteration number

Correctness of QUICKSORT: same as for MERGESORT (induction over
h − l)

Divide and Conquer (S. D. Bruda) CS 317, Fall 2024 5 / 13

LINEAR-TIME SELECTION

We use the QuickSort idea to find the k -th smallest value in a given array,
without sorting the array:
algorithm QUICKSELECT(k , S, l , h):

if l < h then
Choose pivot Sx
S1 ↔ Sx
p ← PARTITION(S, l, h)
if k = p then return Sk
else if k < p then QUICKSELECT(k , S, l , p − 1)
else QUICKSELECT(k , S, p + 1, h)

Correctness: just like for QUICKSORT

Time complexity:
Best case: we always partition equally
T (n) = T (n/2) + n, T (1) = 1 and so T (n) = Θ(n) (better than sorting)
Worst case: one partition is always empty
T (n) = T (n − 1) + n, T (1) = 1 and so T (n) = Θ(n2)

Divide and Conquer (S. D. Bruda) CS 317, Fall 2024 6 / 13

HOW TO CHOOSE GOOD PIVOTS
algorithm MOMSELECT(k , S, l , h):

if h − l ≤ 25 then use brute force
else

m← (h − l)/5
for i = 1 to m do

Mi ← MEDIANOFFIVE(Sl+5i−4...l+5i ) // brute force
// Note: M can and should be an in-place array (within S)

mom← MOMSELECT(m/2,M, 1,m)
S1 ↔ Smom
p ← PARTITION(S, l, h)
if k = p then return Sk
else if k < p then MOMSELECT(k , S, l , p − 1)
else MOMSELECT(k , S, p + 1, h)

Obviously correct (why?)
mom is larger [smaller] than about (h − l)/10 block-of-five medians
Each block median is larger [smaller] than 2 other elements in its block
So mom is larger [smaller] than 3(h − l)/10 elements in S and so cannot
be farther than 7(h − l)/10 elements from the perfect pivot
So T (n) = T (n/5) + T (7n/10) + n ⇒ T (n) = 10 × c × n ⇒ T (n) = Θ(n)

Note in passing: T (n) = T (n/3) + T (2n/3) + n ⇒ T (n) = Θ(n log n)
If QUICKSORT uses MOMSELECT to choose pivot then it gets down to
O(n log n) worst-case complexity (optimal)

Divide and Conquer (S. D. Bruda) CS 317, Fall 2024 7 / 13



FAST MATRIX MULTIPLICATION

With A and B n × n matrices compute C = A × B such that
Ci,j =

∑n
k−1 Ai,k × Bk,j

Straightforward algorithm of complexity O(n3)

Obvious lower bound Ω(n2)

Divide and conquer approach:
(

A←↑ A→↑
A←↓ A→↓

)
×

(
B←↑ B→↑
B←↓ B→↓

)
=

(
C←↑ C→↑
C←↓ C→↓

)

algorithm MATRIXMUL(n, A, B):
if n = 2 then return A× B (brute force)
else

Partition A into A←↑,A→↑,A←↓,A→↓
Partition B into B←↑,B→↑,B←↓,B→↓
C←↑ ← MATRIXMUL(n/2,A←↑,B←↑)+MATRIXMUL(n/2,A→↑,B←↓)
C→↑ ← MATRIXMUL(n/2,A←↑,B→↑)+MATRIXMUL(n/2,A→↑,B→↓)
C←↓ ← MATRIXMUL(n/2,A←↓,B←↑)+MATRIXMUL(n/2,A→↓,B→↓)
C→↓ ← MATRIXMUL(n/2,A←↓,B→↑)+MATRIXMUL(n/2,A→↓,B→↓)
Combine C←↑,C→↑,C←↓,C→↓ into C
return C

T (n) = 8T (n/2) + n2,T (2) = 8 ⇒ T (n) = O(n3) (bummer!)
Divide and Conquer (S. D. Bruda) CS 317, Fall 2024 8 / 13

FAST MATRIX MULTIPLICATION (CONT’D)

To improve complexity we try to compute C←↑,C→↑,C←↓,C→↓ using less
than 8 matrix multiplication operations
Strassen’s definitions:

P = (A←↑ + A→↑)(B←↑ + B→↓) so C←↑ = P + S − T + V
Q = (A→↑ + A→↓)B←↑ C→↑ = R + T
R = A←↑(B→↑–B→↓) C→↑ = Q + S
S = A→↓(B→↑–B←↑) C→↓ = P + R − Q + U
T = (A←↑ + A→↑)B→↓
U = (A→↑–A←↑)(B←↑ + B→↑)
V = (A→↑–A→↓)(B→↑ + B→↓)

Only 7 multiplication operations!
T (n) = 7T (n/2) + n2,T (2) = 8 ⇒ T (n) = O(nlog7) = O(n2.81)

Subsequent algorithms were able to bring complexity down to O(n2.373)

Trick used: split into fewer (but less obvious) sub-problems

Divide and Conquer (S. D. Bruda) CS 317, Fall 2024 9 / 13

LARGE INTEGER MULTIPLICATION

Manipulate big integers → represented by arrays of n digits
Obvious lower bound for addition and multiplication: Ω(n)
The straightforward algorithms are optimal for addition (O(n)) but not
necessarily for multiplication (O(n2))
Divide and conquer approach:

Let u and v be two n-digit integers
Let m = n/2 and let u = x × 10m + y and v = w × 10m + z
It follows that
u × v = (x × 10m + y)(w × 10m + z) = xw × 102m + (xz + yw)× 10m + yz

algorithm INTMUL(n, u, v ):
m← n/2
if u = 0 ∨ v = 0 then return 0
else if n = 2 then return u × v
else

x ← u DIV 10m // most significant m digits
y ← u REM 10m // least significant m digits
w ← v DIV 10m

z ← v REM 10m

return INTMUL(m, x ,w)× 102m

+(INTMUL(m, x , z)
+INTMUL(m, y ,w))× 10m

+INTMUL(m, y , z)

Running time:
T (n) = 4T (n/2) + n,
T (2) = 4

Complexity: O(n2)

Divide and Conquer (S. D. Bruda) CS 317, Fall 2024 10 / 13

LARGE INTEGER MULTIPLICATION (CONT’D)

Improvement:
Let p1 = xw , p2 = yz, p3 = (x + y)(w + z)
Then p3 − p1 − p2 = (x + y)(w + z)–xw–yz = xz + yw
Then p = (x × 10m + y)(w × 10m + z) =
xw × 102m + (xz + yw)× 10m + yz = p1102m + (p3 − p1 − p2)10m + p2

algorithm FASTMUL(n, u, v ):
m← n/2
if u = 0 ∨ v = 0 then return 0
else if n = 2 then

return u × v
else

x ← u DIV 10m

y ← u REM 10m

w ← v DIV 10m

z ← v REM 10m

p1 = FASTMUL(m, x ,w)
p2 = FASTMUL(m, y , z)
p3 = FASTMUL(m, x + y ,w + z)
return p1102m + (p3− p1− p2)10m + p2

Running time:
T (n) = 3T (n/2) + n,
T (2) = 4

Complexity:
O(nlog 3) = O(n1.585)

Divide and Conquer (S. D. Bruda) CS 317, Fall 2024 11 / 13



TROMINO TILING

Tile a bathroom floor (“board”) with trominos without cover-
ing the drain (designated square on the board)
algorithm TILE(B, n, L): // B is the n × n board, L is the drain location

if n = 2 then
Tile with one tromino without covering L

else
Divide B into 4 n/2× n/2 sub-boards B1, . . . , B4
Place a tromino to cover one square on each board that does not
contain L
Let L1, . . . L4 be the squares on each sub-board that are either
covered or L
for i = 1 to 4 do

TILE(Bi ,n/2,Li )

Running time/trominoes used:
T (n) = 4T (n/2) + 1, T (2) = 1
T (n) = 1/3(n2 − 1)
Much better than the trial and error approach

Tromino

1st Tromino to be placed

Divide and Conquer (S. D. Bruda) CS 317, Fall 2024 12 / 13

WHEN NOT TO USE DIVIDE AND CONQUER

Divide and conquer does not work for everything
The crux of the technique is the ability to divide a problem into-sub
problems
Therefore divide and conquer is not the right thing to do when:

The size of sub-problems is the same (or larger) than the size of the original
problem

Example: initial version of matrix or integer multiplication
Dramatic example: computing Fibonacci numbers

When the process of splitting into sub-problems takes too much time
When the process of combining the sub-solutions takes too much time

Divide and Conquer (S. D. Bruda) CS 317, Fall 2024 13 / 13


