Divide and Conquer

Stefan D. Bruda

CS 317, Fall 2025

Divide and Conquer (S. D. Bruda)

DIVIDE AND CONQUER

Idea: algorithm MERGE(S, /, m, h):
. T« /I merge placeholder
Q Ifthe problem is small enough, then i ,<> //gtoppof first half
solve it j—m // top of second half
PR k<« 1 /[top of T
O Otherwise: while i < mAj < hdo
@ Divide the problem into two or more if S; < S then // compare top
sub-problems L Ty < S; // smallerin T
@ Solve each sub-problem recursively ks // advance top
i i else
(3) Cot;nblnglthe stolutgn_s to th? . oS 7 smaller in T
;:1 -prot elms glo ain a solution to e 1 J/ advance top
e original problem ke k41
Example: while i < mdo // flush first half
algorithm MERGESORT(S, /, h): Tie < S 1
if / < hthen L 'k+]
m <« (I+ h)/2 // divide L KK
MERGESORT(S, m+ 1, h) // conquer Tk < S
MERGE(S, I, m, h) // combine J+1
| k<+ k+1
for k =/to hdo //result backinto S
L Sk <+ Tk

CS 317, Fall 2025 1/13

MERGESORT ANALYSIS

Lemma (correctness of MERGE)

IfS;. mand Sn. 1. .n are sorted then at the end of MERGE the sequence T
contains a sorted permutation of S;_p

@ Loop invariant (for all three loops): 7, x_1 is sorted and contains exactly
all the kK — 1 smallest elements of S;

e Proof by induction over k

@ At the end of the loop k = h+ 1 and so the invariant implies the desired
properties of T

Theorem (correctness of MERGESORT)

MERGESORT replaces any input sequence Sy, | with a sorted permutation of
that sequence

@ Proof by induction on h — I
e Inthe base case h— | = 0 MERGESORT (correctly) does nothing
e To sort h — [values MERGESORT sorts correctly (h — /)/2 values two times
(inductive hypothesis) and then correctly merges the two sub-sequences
(lemma), thus obtaining a sorted permutation of the original sequence

Divide and Conquer (S. D. Bruda) CS 317, Fall 2025 2/13

,
0

Lf

MERGESORT ANALYSIS (CONT'D)

@ T(n)=2T(n/2)+n,T(1) =1so T(n) = 0O(nlogn) — already known!
Theorem (comparison sorting lower bound)

The lower bound for comparison sort algorithms is Q(nlog n)

@ We count comparisons using a decision tree
e Internal node S;; represents a comparison between S; and S;
e The left [right] sub-tree represents all the decisions to be made provided that
Si< §[Si > S
e Each leaf labeled with a different permutation of S
e Following a path performs the sequence of comparison given by the
sequence of nodes and produces the leaf permutation of S
@ We have n! permutations (leafs) so the minimum path from root to a leaf
contains log(n!) = ©(nlog n) nodes
@ So a sorting algorithm must perform Q(nlog n) comparisons to
differentiate between all the possible permutations

Corollary (optimality of MERGESORT)
MERGESORT /s optimal

Divide and Conquer (S. D. Bruda)

CS 317, Fall 2025 3/13

QUICKSORT

@ Problem with MERGESORT: require substantial extra space
@ By contrast QuickSort is an in-place sorting algorithm

algorithm QUICKSORT(S, /, h):
if | < hthen
Choose pivot Sy
51 <> SX
p < PARTITION(S, /, h)
QUICKSORT(S, I, p— 1)
QUICKSORT(S, p+ 1, h)

algorithm PARTITION(S, /, h): // ver. 1 algorithm PARTITION(S, /, h): /[ver. 2
pivot < S, pivot < S;
j1 i<
fori=/+1to hdo f+ h+1 /I start beyond ends
if S; < pivotthen repeat
J—Jj+1 repeat /i < i+ 1 until S; > pivot:
Si+ S repeat j < j—1 until S; < pivot:
ifi<jthen S; < S;
51 < until i > j:
| return S S
return j

Divide and Conquer (S. D. Bruda) CS 317, Fall 2025 4/13

ANALYSIS OF QUICKSORT

@ Time complexity:
o Best case: we always partition equally
T(n)=2T(n/2)+n, T(1) =1and so T(n) = ©(nlogn)
e Worst case: one partition is always empty (when?)
T(n)=T(n—1)+n, T(1) =1 andso T(n) = ©(n°)
e Can mitigate (but not fix) the worst case by choosing the pivot randomly of
the best out of k random values for a small constant k

@ QuickSort is not stable

@ Correctness of PARTITION:

e Loop invariant for version 1: At the end of an iteration all values S;;1. ; are
smaller than pivot and no value S, 1. ; is smaller than pivot
e Can verify by induction over i
e Invariant implies desired postcondition that everything in S, ,_1 is less than
pivot and nothing in Sp.1._.5 is less than the pivot
e Loop invariant for version 2: At the end of an iteration all values in S, ; are
smaller than the pivot and no values in S; . , are smaller than the pivot
e Can verify by induction over the iteration number
@ Correctness of QUICKSORT: same as for MERGESORT (induction over
h—1)
Divide and Conquer (S. D. Bruda)

CS 317, Fall 2025 5/13

LINEAR-TIME SELECTION

@ We use the QuickSort idea to find the k-th smallest value in a given array,
without sorting the array:

algorithm QUICKSELECT(k, S, /, h):
if | < hthen
Choose pivot Sy
81 <> Sx
p < PARTITION(S, I, h
if Kk = pthen return S;
else if kK < pthen QUICKSELECT(k, S,/,p—1)
else QUICKSELECT(k, S, p+ 1, h)

@ Correctness: just like for QUICKSORT
@ Time complexity:
e Best case: we always partition equally
T(n)=T(n/2)+n, T(1) =1andso T(n) = ©(n) (better than sorting)
e Worst case: one partition is always empty
T(n)=T(n—1)+n, T(1) =1andso T(n) = ©(n?)

Divide and Conquer (S. D. Bruda) CS317,Fall2025 6/13

HOw TO CHOOSE GOOD PIVOTS

algorithm MOMSELECT(k, S, /, h):
if h— | < 25 then use brute force
else
m«+ (h—1)/5
fori=1tomdo
M; < MEDIANOFFIVE(S/ 5;_4...1+5;) // brute force
| // Note: M can and should be an in-place array (within S)

mom <— MOMSELECT(m/2, M, 1, m)

Sy < Smom

p < PARTITION(S, I, h

if Kk = pthen return S;

else if Kk < pthen MOMSELECT(k, S,/,p—1)
else MOMSELECT(k, S, p+ 1, h)

@ Obviously correct (why?)
@ mom is larger [smaller] than about (h — /)/10 block-of-five medians
@ Each block median is larger [smaller] than 2 other elements in its block
@ So mom is larger [smaller] than 3(h — /) /10 elements in S and so cannot
be farther than 7(h — 1) /10 elements from the perfect pivot
@ So T(n)=T(n/5)+ T(7n/10)+n= T(n)=10xcx n= T(n)=0O(n)
e Note in passing: T(n) = T(n/3)+ T(2n/3) + n=- T(n) = ©(nlog n)
@ If QUICKSORT uses MOMSELECT to choose pivot then it gets down to
O(nlog n) worst-case complexity (optimal)
Divide and Congquer (S. D. Bruda)

CS 317, Fall 2025 7/13

FAST MATRIX MULTIPLICATION

With A and B n x n matrices compute C = A x B such that
Cij = k-1 Aix X Br,

@ Straightforward algorithm of complexity O(n®)

@ Obvious lower bound Q(n?)

@ Divide and conquer approach:

(A<—T|A—>T)X(B<—T|B—>T>:<C<—T|C—>T>
A<—¢ ‘ A—>¢ B<—¢ ‘ B—>¢ C<—¢ ‘ C—>¢
algorithm MATRIXMuL(n, A, B):

if n = 2 then return A x B (brute force)
else

Partition Ainto A4+, A1, A, A}

Partition Binto B, +,B_4+,B|,B_,|

C 4 + MATRIXMUL(N/2, A+, B 4)+MATRIXMUL(N/2,A_,4, B })
C_,4 < MATRIXMUL(Nn/2, A+, B_,4)+MATRIXMUL(N/2, A4, B,)
C | < MATRIXMUL(N/2, A |, B 4)+MATRIXMUL(N/2,A_,|,B_,))
C_,| + MATRIXMUL(Nn/2, A |, B_,4)+MATRIXMUL(N/2,A_,|,B_,))
Combine C._4+,C_4+,C,C_, into C

return C

@ T(n)=8T(n/2)+ n?,T(2) =8 = T(n) = O(n®) (bummer!)

Divide and Conquer (S. D. Bruda) CS317,Fall2025 8/13

FAST MATRIX MULTIPLICATION (CONT’D)

@ To improve complexity we try to compute C.+, C_,4+,C, C_,| using less
than 8 matrix multiplication operations

@ Strassen’s definitions:

= (At + A1) (Ber + B4 y) SO Ccr=P+S-T+YV
= (A4 +AL))Boy C.+=R+T
= A +(Bo4+-By) C+=Q+S

A (B T_B<—T) C—>¢:P+R—Q+U

(A<—T +A.1)Boy
(As1=Act) (Bt + Byt)
(Ast=As 1) (Bt + Boyy)

<Q\|(DZUO"U
I

@ Only 7 multiplication operations!
@ T(N)=7T(n/2)+n?, T(2) =8 = T(n) = O(n9) = O(n?8")

e Subsequent algorithms were able to bring complexity down to O(n?-*"3)
@ Trick used: split into fewer (but less obvious) sub-problems

Divide and Conquer (S. D. Bruda) CS 317, Fall 2025 9/13

LARGE INTEGER MULTIPLICATION

Manipulate big integers — represented by arrays of n digits
@ Obvious lower bound for addition and multiplication: Q(n)
@ The straightforward algorithms are optimal for addition (O(n)) but not
necessarily for multiplication (O(n?))
@ Divide and conquer approach:
o Let vand v be two n-digit integers
o Letm=n/2andletu=xx10"+yandv=w x 10" + z
o |t follows that
uxv=_xx10"+y)(wx 10"+ z) = xw x 10°™ + (xz + yw) x 10™ 4 yz
algorithm INTMuL(n, u, v):

m < n/2 @ Running time:
ifu=0vv=0then return0 T(n)=4T(n/2)+ n,
elseif n=2then returnu x v T(2) =4

else

X < uDIV10™ // most significant m digits @ Complexity: O(n?)
Yy < U REM 107 /I least significant m digits
w < v DIV 10"
Z + vV REM 107
return INTMuUL(m, x, w) x 1027
+(INTMUL(m, x, Z)
+INTMUL(m, y, w)) x 107
+INTMUL(m, y, Z)

Divide and Conquer (S. D. Bruda) CS 317, Fall2025 10/13

LARGE INTEGER MULTIPLICATION (CONT’D)

@ Improvement:
o Letpr=xw,po=yz,ps = (x+ y)(w+ 2)
o Thenps —p1 —p2 = (X + y)(W+ 2)-xw-yz = xZ + yw
@ Thenp=(xx10"+ y)(wx 10"+ z) =
xw x 10°™ + (xz + yw) x 10" 4+ yz = p110°™ + (ps — p1 — p2)10" + po
algorithm FASTMuUL(n, u, v):

m < n/2 e Running time:
if u =0V v =0then return 0 T(n) =3T(n/2) + n,
else if n =2 then T(2) =4
L returnux v
else e Complexity:
X < u DIV 10™ O(n'"°&3) = O(n'-°%)

Yy < UREM 107

w <« v DIV 107

Z < V REM 107

py = FASTMUL(m, x, w)

po = FASTMUL(m, y, Z)

p3 = FASTMUL(m, x + y, w + 2)

return p;102™ + (p3 — py — P2)10™ + po

Divide and Conquer (S. D. Bruda) CS 317,Fall2025 11/13

TROMINO TILING

Tile a bathroom floor (“board”) with trominos without cover-
ing the drain (designated square on the board)

algorithm TILE(B, n, L): // Bisthe n x nboard, L is the drain location H
if n = 2 then
| Tile with one tromino without covering L
else

Divide B into 4 n/2 x n/2 sub-boards By, ..., By
Place a tromino to cover one square on each board that does not Tromi
contain L romino
Let Ly, ... L4 be the squares on each sub-board that are either
covered or L
fori=1to4do
| TILE(B;,n/2,L))

Running time/trominoes used:
@ T(n)=4T(n/2)+1,T(2) =1
° T(n)=1/3("?—1) 1% Tromino to be placed
@ Much better than the trial and error approach

Divide and Conquer (S. D. Bruda) CS317,Fall2025 12/13

WHEN TO USE DIVIDE AND CONQUER

@ Divide and conquer does not work for everything

@ The crux of the technique is the ability to divide a problem into-sub
problems

@ Therefore divide and conquer is not the right thing to do when:

e The size of sub-problems is the same (or larger) than the size of the original
problem

@ Example: initial version of matrix or integer multiplication

@ Dramatic example: computing Fibonacci numbers
@ When the process of splitting into sub-problems takes too much time
@ When the process of combining the sub-solutions takes too much time

Divide and Conquer (S. D. Bruda) CS 317, Fall2025 13/13

