Dynamic Programming

Stefan D. Bruda

CS 317, Fall 2024

DYNAMIC PROGRAMMING

MEMOIZATION AND DYNAMIC PROGRAMMING

@ Recursive implementations can be expensive:

algorithm RECFIB(n):

if n < 1 then return n

| else return RECFIB(n — 1) + RECFIB(n — 2)

@ Memoization: Remember intermediate results
algorithm MEMFIB(n):

if n=0VvV n=1then return 1

else_f F ic undefined th O(n) time

L 1 n [5 UNCEANES then O(n) (+recursion) space

0O(2") time
O(1)+recursion space

| Fn < MEMFIB(n— 1) + MEMFIB(n — 2)
return Fp

@ Dynamic programming: Remember intermediate results explicitly
algorithm DYNFIB(n):

Fot 0 Fy ¢ 1 O(n) time
for i=1tondo Fp< Fp_y+ Fro O(n) space
| return Fp

@ Can also consider remembering intermediate results only as needed

Igorithm DYNFIB(n):
prev < 0; curr < 1

for i=1tondo

\\ next <— prev + curr

o

O(n) time
prev « curr O(1) space
curr < next

L return curr

Dynamic Programming (S. D. Bruda) CS 317, Fall 2024 1/9

0/1 KNAPSACK

@ Dynamic programming = recursion without repetition
@ Formulate the problem recursively
@ Use a bottom-up approach (starting from the base cases)
@ Build the dynamic programming solution

@ Identify subproblems
@ Choose memoization data structure
@ Identify dependencies and so find evaluation order

@ Often but not always applicable to optimization problems

e But in this case only for problems that satisfy the principle of optimality: An
optimal solution to the problem contains optimal solutions to subproblems

Dynamic Programming (S. D. Bruda)

CS 317, Fall 2024 2/9

o Givenw = (wy,...,wy) and p=(p1,...,pn), find x = (X1,..., Xn),
x; € {0,1} such that 3"7 , x;p; is maximized subject to >, x;w; < C
@ Bottom-up recursive solution (O(2M)):

algorithm RECKNAPSACK(/, C, n,p, w): (handle the i-th object)
if i > nthen return (0, ())
else

(p—, X=) + RECKNAPSACK(i +1,C,n,p,w) (do not pick item i)
if w; < Cthen

(p+, X4+) + RECKNAPSACK(i+ 1,C — wj, n,p,w) (pick item /)
else

L (p+,Xy) < (0,()) (we cannot pick item i so we set profit to minimum)
return MAXFST({(p—, (0) + X_), (p+ + w;, (1) + X;)})

° Memoization structure must contain information related to the remaining
items and the remaining capacity = table of item x capacity

@ Increment of capacity smaller than the smallest w;

@ Each subproblem (entry in the table) depends on the “upper” and
“upper-left” subproblems

@ Table filled in top to bottom, left to right

Dynamic Programming (S. D. Bruda) CS 317, Fall 2024 3/9

0/1 KNAPSACK (CONT’D)

@ Dynamic programming solution:
algorithm KNAPSACK(C, n, p, w):
fori=1tondo P+ 0 j« C
forj=1toCdo Py;+«+ 0 for i = ndownto 1 do
fori=1to ndo if P,,—P,Uthen

forj=1to Cdo ‘I Xj
if w; > j then Pi,j — P,'_1’/‘ € Sex' 1
else P;; < max{Pi_1j,pj + Pi_1,j—w} L Jej—w

@ Running time: ©(n x C) — no better than ©(2")!

@ Many problems are very similar to 0/1 Knapsack
o Example (subset sum): Given an array A;._, of positive integers and an
integer T, does any subarray of Asumsupto T
@ Subproblems: SS(i, t) = TRUE iff some subset of A sums to ¢
@ Recursive solution:

TRUE ift=0
.) FALSE ifi>n
SS(h) =\ ss(i+1,1) ift < A

SS(i+1,t) v SS(i+1,t— A) otherwise

@ Memoization structure: table Sy 0.7
@ Evaluation order: rows bottom to top, arbitrary order in a row

Dynamic Programming (S. D. Bruda)

OPTIMAL BST

@ Given n keywords along with their probabilities py, po, . . ., pn, store them
in a binary search tree such that the average search time is minimized
o Example: cat (0.1), bag (0.2), apple (0.7)
e Sorted: apple (0.7), bag (0.2), cat (0.1)
o Five dlfferent BST:

app/e apple
@
apple

Average search tlme.

0.1+2x0.24+ 0.1+2x0.74 0.242x0.74 0.74-2x0.14 0.74-2x0.24
3x07=26 3x02=21 3x01=18 3x02=15 3x01=1.4

@ Subproblems: A is the average search time for a BST with keywords
fromitoj

@ Recursive solution (O(n®) with memoization):

pi (oot i) iti=j
Aij= ¢ 0(null) _ if i >
minigkgj(Ai,k—1 + Ak+1’j + Ejm:i pm) (root k) ifi<j

@ Obvious memoization

@ Evaluation order: down by diagonal, arbitrary order within diagonal
CS 317, Fall 2024

Dynamic Programming (S. D. Bruda)

algorithm KNAPSACKTRACE:

CS 317, Fall 2024 4/9

N ALL-PAIRS SHORTEST PATH

MATRIX CHAIN MULTIPLICATION

@ Given M = My x M> x ... x M, with the dimensions of the matrices
stored in ry._p, such that each M; has r;_1 rows and r; columns, find how
to bracket the matrix multiplications to minimize the total number of
multiplications

o Example: r = (2,10, 1, 3) that, is A(2 x 10) x B(10 x 1) x C(1 x 3)
@ A Xx (B x C) needs 90 integer multiplications
@ (A x B) x C needs 26 integer multiplications (faster)
e Subproblems: mj is the cost of computing M; x ... x M;
Recursive solution:

o fo iti =
Y minj<k<j(Mjx + M1+ ficg X ne x) ifi<j

Memoization structure: table m;..,_1,1...» to store the result of subproblems
Evaluation order: by diagonal top to bottom with arbitrary order within a
diagonal

algorithm MATRIXCHAINMULT: o(n®)
fori=1tondo m; < 0
forr=1ton—1do
L fori=1ton—rdo

j—i+r
m; j <= mini<pej(Mj g+ Mycpq j+ 1 X I X 1)

CS 317, Fall 2024 5/9

Dynamic Programming (S. D. Bruda)

@ Given a weighted (directed or undirected) graph G = (V. E) wits |V| =n
and |E| = m, find the shortest path from each vertex to all other vertices
@ Floyd’s algorithm: Find shortest paths of rank k for increasing k
o Uses the adjacency matrix Gi...n1..n of G
o Path of rank k: path that only traverses vertices 1 to k (not counting the
source and the destination)
o SprrOblemS: Pk = (A;(,j77rlk,j)1S/Sn,1S/§"
Ak is the cost of the minimum path of rank k from i to j
° 7rk is the predecessor of j in the minimum cost path of rank k from i to j
° Recurswe solution:

o Gij ifk=0
5= mm{Ak 1 Ak 1+AZ71} otherwise
i ifk=0
= 7Tk/ b Ak LA Aﬁ‘
K |fAk 1>Ak A

Dynamic Programming (S. D. Bruda) CS 317, Fall 2024 7/9

FLOYD’S ALGORITHM (CONT’D) =N THE TRAVELLING SALESMAN PROBLEM

@ Given a weighted directed graph G = ({1,2,...,n}, E) find the
Hamiltonian Cycle of minimum cost

@ Memoization: arrays A* and =¥ for cost and predecessor

@ Evaluation order: increasing k, arbitrary for i and j o Naive solution: try all the permutations, retain the one with minimal cost
fori=1tondo (O(n2") time)
for j :0 1to ndo o Crux:
Aij < Gi o Start the cycle at vertex 1
| L o Let the next vertex be k
for k = 1to ndo o(n®) o The path from k to 1 must be an optimal (minimum cost) Hamiltonian path
for i =1to ndo for the graph induced by V' \ {1}
forj=1tondo @ Recursive solution:
A) < A/',II(<_1Jr Ay, then o Let g(i, S) be the length of the shortest path starting at i and going through
‘IseAf’j — A all the vertices in S back to 1
e .
k k—1 k—1 . _ min(,-,j)EE(W(i,j)) ifS=10
| e 60:) = { TR > o5\ G ot

| L o Memoization: Table (gij)ic(1, .. ny jeott....m
e Optimization: A single predecessor array = o Order of evaluation: increasing second dimension, do not care for the first
e Running time: O(n2")
@ Unknown (million dollar question, literally) whether we can do better than

g H . k—1 k
o Further optimization: At any step we only need A" and A%, so we only the naive solution for the travelling salesman and the 0/1 knapsack (and
need two matrices for the cost (current and previous) many more problems)

Dynamic Programming (S. D. Bruda) CS 317, Fall 2024 8/9 Dynamic Programming (S. D. Bruda) CS 317, Fall 2024 9/9

@ When computing w;‘j we only need 7r,'.‘l.’1 and then we can overwrite it

