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THE GREEDY TECHNIQUE

@ Typically suitable to for optimization problems
@ Builds the solution iteratively

@ Makes a locally optimum choice in each iteration in the hope that all local
optima will lead to a global optimum

@ Guaranteed to give a “good” solution, but does not guarantee an optimal
solution for all optimization problems

algorithm GREEDY(A: set of candidates):
solution + ()
while solution not complete do
X < SELECTBEST(A) (local optimum)
A+ A\ x
if FEASIBLE(solution U x) then
| solution < solutionU x
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MINIMUM-COST SPANNING TREES

@ A spanning tree of a graph G is a connected acyclic subgraph of G that
contains all the vertices
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@ Problem: Given a weighted undirected connected graph G

@ Question: Find a spanning tree of G with minimum cost
e Many applications including transportation networks, computer networks,

electrical grids, even financial markets
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KRUSKAL'S ALGORITHM

@ For a given weighted graph G = (V, E, w):
e Choose an edge e of minimum weight w(e)
o If the edge does not create a cycle add it to the tree

algorithm KRUSKAL(G = (V, E, w)):
T+ 0
c«+0
L+ E
while |T| < n—1do
Select e € L, w(e) = min{w(x) : x € R}
L+ L\{e}
if T U e does not contain cycles then
T+ Tu{e}
c<«+ c+ w(e)

@ Still to implement:
e Find an edge with a minimum weight

e Detect cycles

@ Data structures needed:

o List of edges sorted by weight
e Disjoint sets representing each connected component
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KRUSKAL'S ALGORITHM EXAMPLE
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KRUSKAL'S ALGORITHM (CONT’D)

algorithm KRUSKAL(G = (V, E,w)): @ Choice of implementation for the priority

T <—(()Z) queue:
(L:i MAKEQUEUE(E) e Sorted list: O(nlog n) to create, O(1) to
fori=1to ndo MAKESET(/) extract minimum
i< 1 i .
while i < n— 1 do e Min heapl. Q(n) to create, O(log n) to
Sy < FINDSET(u i i _ _ .
e FINDSETEV% @ Running time (|V| = n, |E| = m):
if sy # s, then e With sorted list:
UNION(sq, S _ _
T<—T(u1{ 3?\/) T(n)=mlogm+n+m(1+2logn) =
¢+ ¢+ w((u,v)) O(mlog n)
< i+1 e With heap:
- T(n)=m+ n+ m(logm+ 2logn) =
O(mlogn)

@ Correctness:

e Loop invariant: The graph induced by each disjoint set Sin (S, T) is a
minimum-cost spanning tree for (S, E)

e Kruskal’s algorithm maintain a forest of minimum-cost spanning trees,
collapsing it progressively into a single overall minimum-cost spanning tree
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PRIM'S ALGORITHM

@ Maintains a single, partial minimum-cost spanning tree
e Start with a single vertex and no edges

e Expand the tree by greedily choosing the minimum weight edge with an end
in the tree and the other end outside the tree

algorithm PRIM(G = (V, E, w), vy € V):
T+ 0

c+0

S « {Vo}

while S # V do
Selectv € V' \ Snearestto S
Let u € S be the nearest vertex to v
S+ Su{v}
T+~ TuU 5v, u)}
c <+ c+ w((u,v))

° TB keep track of candidate edges for each vertex outside the tree we
keep track of:

@ lts minimum distance from the tree
e The edge that realizes that minimum distance

Greedy Algorithms (S. D. Bruda) CS 317, Fall 2025 6/29

PRIM'S ALGORITHM EXAMPLE
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PRIM’S ALGORITHM (CONT’D)

algorithm PRIM(G = (V,E, w), vy € V):

T @ Can organize dist as:
for 0 0to ndo e Heap: O(n) to heapify and O(log n)
dist; + w(i, vo) to update but O(1) to get the

| nearest; + v

minimum
PEAPIF}/(SI'SI‘) gogtional) e Plain array: no need to heapify or
or/ = on— (o]
v « DEQUEUE(dist) updgte, but O(n) to get the
T+ TU {&/, nearestv)}) minimum
Cc < ¢+ w((v, nearest, : : _ _ .
foreach neighbor x of \‘//outside tee @ Running time (| V| =n, |E| = m):
do it w(v. x) < disty th e The foreach loop runs O(m) times
if w(v, x) < distx then \
disty — w(V, X) overall (amortized)
nearesty < v . e Heap:
UPDATE(distx) ~ (optional) T(n)=n+n+nlogn+ mlogn =
L - O(mlog n)
o Array:

T(nN)=n+nxn+m= O(r?)
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KRUSKAL AND PRIM (CONT’D)

@ Correctness of Prim:

e Loop invariant: The partial tree is a minimum-cost spanning tree for the
vertices it contains

@ Comparison between Prim and Kruskal:

Running time  Sparse graphs Dense graphs
(m = o(r?/logn)) _(m = O(r?))
Kruskal O(mlog n) O(nlogn) O(n? log n)
Prim Array  O(n?) Oo(n?) Oo(n?)
Heap O(mlogn) O(nlog n) O(n* log n)

o No difference between Kruskal and Prim using a heap on sparse graphs
e Notable advantage for Prim using an array on dense graphs
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THERE IS ONLY ONE MINIMUM SPANNING TREE!

If all the edge weights in a connected graph G are distinct then G has a
unique minimum-cost spanning tree

@ Proof by contrapositive:

Let T and T’ be two minimum-cost spanning trees of G
e Let e and €’ be the minimum weight edge in T\ T" and T’ \ T respectively,
w(e) < w(e')
T' U {e} must contain cycle C that goes through e, let e’ € C\ T
It must be that w(e”’) > w(e') > w(e) (since e’ € T"\ T)
Let 7" = T' U {e} \ {€"} (greedy replace)
@ T” is a spanning tree (we replaced one edge in a cycle with another in the same
cycle
° vgl(T’?) =w(T')+ w(e) —w(e”)sow(T"”) < w(T’) (since w(e) < w(e"))
@ But T’ is a minimum-cost spanning tree, so it must be that w(7"") = w(T’) and
so w(e) = w(e”)

@ This kind of reasoning also works for not necessarily distinct edge
weights as long as we use a consistent way of breaking ties

Greedy Algorithms (S. D. Bruda) CS 317, Fall2025 10/29

THERE IS ONLY ONE ALGORITHM!

@ Edge classification:
e Useless: (u,v) ¢ F with uand v in the same connected component of F
e Safe: minimum-weigth (u, v) with only u or v in a connected component of F
@ Generic strategy for the minimum-cost spanning tree: Maintain an acyclic
subgraph F of G such that F is a subgraph of the minimum-cost spanning
tree of G by always choosing safe edges (and never useless edges)

The minimum-cost spanning tree of G contains every safe edge I

@ Greedy-replace proof technique:

Show that the minimum-cost spanning tree of any S C G contains the safe
edge efor S

Let T be a minimum-cost spanning tree of G not containing e

It must have an edge €', w(e’) > w(e) that connects S with the rest of G
Then T" =T\ {€'} U {e} is a spanning tree with w(T') < w(T), a
contradiction

The minimum-cost spanning tree contains no useless edge I
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SINGLE-SOURCE SHORTEST PATH

@ We are given a directed, weighted graph G = (V, E, w)

o Notation: A path p = (v, v, ..., Vk) connects vy and vy and we write vowp»vk
e The shortest-path weight from some vertex u to some vertex v is:

s(u,v) = 4 min{w(p): ubsv}  if there exists a path from uto v
’ o0 otherwise

e A shortest path from u to v is a path p such that u<>v and w(p) = 6(u, v)

@ When we are interested in finding shortest paths in a graph we solve a
shortest-path problem

e Single source, single destination (e.g., finding the shortest way to travel from
point A to point B)

e Single source, all destinations (e.g., broadcasting a message from one node
in a network to all the other nodes)

e All pairs shortest path (e.g., finding the fastest way to send information from
any node in a network to any other node)
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THE SINGLE-SOURCE SHORTEST-PATH PROBLEM

One shortest path contains other shortest paths within it. Formally, if
p=(Vo,V4,...,Vi,...,Vj,..., V) IS @ shortest part from vy to v then the
sub-path (v;, ..., v;) of p is a shortest path between v; and v;

@ The lemma implies that the single source, single destination variant does
not make sense since solving it effectively solves the single source, all
destinations variant:

Input: a weighted graph G and a Output: the shortest paths be-
source node s: tween s and any other vertex in G:

@ The lemma also ensures that a greedy approach will work
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INITIALIZATION

For each vertex v in the input graph, we keep two values:

@ d, is a shortest-path estimate, initially oo for all the vertices but s
@ 7, is the predecessor of v in the shortest path, initially NIL

@ our shortest path algorithm will set =, for all the vertices in the graph
e then, the predecessor link from some vertex v to s runs backwards along a
shortest path from sto v

algorithm INITIALIZESINGLESOURCE(G = (V,E,w), s € V; d, 7):
foreach v € V do
dv <— o0
my <— NIL

d3<—0
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@ All algorithms that solve the shortest-path problem are built around the
relaxation technique

@ Simple idea: if we find something better, we go for it

algorithm RELAX(y,z,w € V; d, 7):
if d; > dy + w(y, z) then
shortest pathéfy o L dz < dy + w(y, 2)

DECREASEKEY(Q, z, d>)
new shortest path to z
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DIJKSTRA'S ALGORITHM

@ Dijkstra’s algorithm solves the single-source shortest-path problem on a
weighted, directed graph G = (V, E, w) with positive edge weights

algorithm DIUKSTRA(G = (V,E,w),s € V; m):
INITIALIZESINGLESOURCE(G, 5)
S+ 0
Q < MAKEQUEUE(V, d)
while —ISEMPTY(Q) do

u < DEQUEUE(Q)

S+ Su{u}

foreach v adjacentto u, v ¢ S do

| RELAX(u,v,w)

e The algorithm maintains a set S of vertices whose final shortest path from

the source s has been already determined
e The algorithm (greedily) keeps selecting the most promising edge u € V' \ S,

adds it to S, and relaxes all the edges leaving u

@ The “most promising” edge is the one with minimum dy
@ Priority queue Q for quick access to this most promising edge
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DIJKSTRA’S ALGORITHM (CONT’D)

algorithm DIUKSTRA(G = (V,E,w), s € V;n):
INITIALIZESINGLESOURCE(G, S)
S« 0
Q < MAKEQUEUE(V, d)
while —ISEMPTY(Q) do

u + DEQUEUE(Q)

S+ Su{u}

foreach v adjacentto u, v € S do

| RELAX(u,v,w)
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DIJKSTRA’S ALGORITHM (CONT’D)

algorithm DIUKSTRA(G = (V,E,w),s € V; n):
INITIALIZESINGLESOURCE(G, S)
S« 0
Q <+ MAKEQUEUE(V, d)
while —ISEMPTY(Q) do

u <+ DEQUEUE(Q)

S+ Su{u}

foreach v adjacentto u, v ¢ S do

| RELAX(u,v,w)
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U while —ISEMPTY(Q) do... T
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DIJKSTRA'S ALGORITHM ANALYSIS

@ Dijkstra’s algorithm relies heavily of operations on the queue Q, namely
ENQUEUE, DEQUEUE, and DECREASEKEY, of running time, say, t,(n),
t_(n), ty(n), respectively (with n=|V|, m = |E|)

algorithm DIUKSTRA(G = (V,E,w), s € V; n):
INITIALIZESINGLESOURCE(G, S)
S+ 0
Q < MAKEQUEUE(V, d)
while —ISEMPTY(Q) do

u <+ DEQUEUE(Q)

S+ Su{u}

foreach v adjacentto u, v ¢ S do

| RELAX(u,v,w)

@ Total running time: O(n x t.(n) + nx t_(n) + m x t(n))

@ Correctness, or we always pick the right vertex: Let u; and u;, 1 be the
vertices returned by two successive calls to DEQUEUE; then dy, < d,,,,
just after the extraction

Either (u, uir1) € E and uj1 is relaxed, so dy,, = dy, + w((ui, Uir1)) > dy,

Or u;44 is not relaxed so it is already in the queue so dy,,, > dy,

Trivial generalization for u; and uj«

No vertex is dequeued more than once

Proof only works for positive edge weights
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ANALYSIS (CONT’'D)

@ The performance of Dijkstra’s algorithm depends heavily of how the
priority queue is implemented (again!)
((n)  t(n) k)
Array queue O(1) O(n) o(1)
Heap queue O(logn) O(logn) O(logn)

Running time Sparse graphs Dense graphs
(m=o(n*/logn)) (m=O(n?))
Array Q O(n® + m) Oo(n?) o(n?)
Heap Q O((n+ m)logn) O(mlogn) O(n? log n)
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DATA COMPRESSION

@ Represent data using the minimum amount of bits
@ Lossy

e Compressed data cannot be restored in its original form

Significant compression ratio

Mostly used for multimedia encoding

Examples: JPEG (Joint Photographic Experts Group) and MPEG (Moving
Picture Experts Group)

@ Lossless

e Compressed data can be perfectly reconstructed
@ Lower compression ratio
e Examples: Zip, Gif, Huffman encoding

@ The Huffman code is an optimal variable-length prefix code

e Minimizes the average number of bits/character based on the character
frequencies of occurrence
e Code system with the prefix property (prefix code): no code is a prefix of any
other code
@ Necessary for decoding variable-length codes
@ Example: A, B, C, D can be encoded respectively as 0, 10, 110, 111, but not as
1,10, 110, 111 (since the code for A would be a prefix for B, C and D)
@ Note in passing that fixed length codes (e.g. 00, 01, 10, 11) are all prefix codes
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THE HUFFMAN CODE

@ Example: Five characters with their frequency:
A (5%), B (25%), C (20%), D (15%), E (35%)
e Traditional (fixed-length encoding):
A=000, B=001, C=010, D=011, E=100 (3 bits/character)
@ Prefix code tree:
e Choose and remove the letter with highest frequency, assign as left child
e Repeat for the right child

Label left branches with 0 and right branches with 1
e Code for a character is the path from root to letter

algorithm HUFFMANLITE(C): Letter Freq Code Weighted # bits
/I C = set of n characters A 0.05 1111 4x0.05=0.2

H < MAKEQUEUE(C) B 025 10 2x025=05

T < new node C 0.20 110 3x0.20=0.6
fori=1ton—1do D 0.15 1110 4x0.15=0.6

E 035 0 1 x 0.35=10.35

T.right < new node
T « T.right @ Average bits per letter:
T.right « DEQUEUE(H) 0.2+0.5+0.6+0.6+0.35=2.25

L // Set codes in a BFS traversal @ Improvement of 25%
@ Correctness: letters at different depths = different all-1 prefixes before 0

@ Running time: ©(nlog n) (both array and heap)

L T.left <+ DEQUEUE(H)
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THE HUFFMAN CODE (CONT’D)

@ We can do better by assigning frequencies to internal nodes and
choosing the best two frequencies to be the children of a new node:

algorithm HUFFMAN(C):

/I C = set of n characters

H « MAKEQUEUE(C)

while H # () do
T < new node
T.left «+— DEQUEUE(H)
T.right + DEQUEUE(H)

INSERT(T)
| // Set codes in a BFS traversal

T.freq < T .left.freq+ T .right.freq

@ Running time: ©(n?) (sorted list) or ©(nlog n) (heap)

Letter Freq Code Weighted # bits
A 0.05 000 3x0.05=0.15
B 0.25 10 2x025=0.5
C 0.20 01 2x020=04
D 0.15 001 3x0.15=0.45
E 0.35 11 2x035=07

@ Average bits per letter: 2.2, 27% improvement
@ Correctness: different paths ensure at least one different bit
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OPTIMAL TEXT COMPRESSION
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@ Huffman’s algorithm produces an optimal tree
e Show that the two least frequent characters have to be siblings in an optimal

tree using a greedy-replace technique
e Proceed upward by induction

@ See textbook
@ Text compression algorithm:

e Calculate the frequency of all letters in the text

@ Construct the Huffman tree

e Encode all the text using the codes obtained from the Huffman tree

@ Text recovery algorithm:

Output the leaf label
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Traverse the Huffman tree from root to a leaf according to the input bits

Repeat traversal for as long as there are bits in the input
Note: this is why we need a code system with the prefix property!
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THE KNAPSACK PROBLEM

@ Given w = (wy, Wa, ..., Wy,) and p = (p1, P2, ..., Pn), find
X = (X1, X, ..., Xn) such that >"7_, x;p; is maximized subject to
> xiw < C
e Given n objects, each with a corresponding weight w; and profit p; and a

knapsack of specific capacity C, choose the objects (or fractions) that you
can fit in the knapsack so that the total profit is maximized

@ Two versions:

e Fractional knapsack: 0 < x; < 1
e 0/1 knapsack: x; € {0,1}
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FRACTIONAL KNAPSACK

@ Greedy strategies:

@ Take objects one at a time in increasing order of their weights, until the
knapsack is full (a fraction may need to be taken for the last object)
@ Take the objects in decreasing order of their profits
@ Take the objects in decreasing order of their profits per unit weight ratio
@ Example: w = ( 5 10, 20 ) C = 30
p = ( 50, 60, 140 )
p/w = ( 10, 6, 7 )
@ x=(1,1,15/20), P =50 + 60 + 140 x 15/20 = 215
Q@ x=1(0,1,1), P=60+ 140 = 200
Q x=(1,5/10,1), P=50+60 x 5/10 + 140 = 220
@ Infact it can be shown that the third strategy will always guarantee an
optimal solution
e Suppose that we have an optimal solution that uses some amount of the
lower value density object

e Then we substitute that with the same weight of the higher value density
object and we obtain a better solution, a contradiction
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0/1 KNAPSACK

wo = 5 10, 20 w = ( 18, 15, 10 )
p = 50, 60, 140 ) p = ( 25 24, 15 )

p/w = ( 10, 6, 7 ) p/w = ( 138, 16, 15 )
c = 30 c = 20

@ Byw: x=(1,1,0), P=110 @ Byw: x=(0,0,1), P=15

@ Byp: x=(0,1 1) P =200 @ Byp: x=(1,0,0), P =25

@ Byp/w:x=(1,0,1), P=190 @ Byp/w:x=(0,1,0), P =24
wo = 5 10, 20
p = «( 80, 50, 120 )

p/w = ( 16, 5, 6 )
Cc = 20

@ Byw: x=(1,1,0), P=130

@ Byp: x=(0,0,1), P=120

@ Byp/w:x=(1,0,0), P=50

@ No greey strategy guarantees an optimal solution for the 0/1 knapsack
problem
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THE GREEDY-CHOICE PROPERTY

The greedy technique works only for those problems that have the
greedy-choice property: We can assemble a globally optimal solution by
making locally optimal (greedy) choices

@ Goes hand in hand with the greedy-replace proof technique
@ Many problems have the greedy-choice property, many more do not
(such as the 0/1 knapsack)

@ For some problems without the greedy-choice property may obtain a
“good enough” solution for some reasonable definition of “good enough”

e Good example: 0/1 knapsack
@ To be continued
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