• We use backtracking

• Commonly used to make a sequence of decisions to build a recursively defined solution satisfying given constraints

WHEN DYNAMIC PROGRAMMING DOES NOT WORK

- In each recursive call we make exactly one decision which is consistent with all the previous decisions
- Example:
 - algorithm RECKNAPSACK(i, C, n, p, w): (handle the *i*-th object) if i > n then return $(0, \langle \rangle)$ else $(p_-, X_-) \leftarrow \text{RECKNAPSACK}(i + 1, C, n, p, w)$ (do not pick item *i*) if $w_i \leq C$ then $| (p_+, X_+) \leftarrow \text{RECKNAPSACK}(i + 1, C - w_i, n, p, w)$ (pick item *i* if we can) else $[(p_+, X_+) \leftarrow (0, \langle \rangle)$ return MAXFST({ $(p_-, \langle 0 \rangle + X_-), (p_+ + w_i, \langle 1 \rangle + X_+)$ })
- Alternative to backtracking: brute force
 - Generate all possible complete sequences of decisions one by one and check if they yield a solution
 - Backtracking has a chance of doing better since it stops when a sequence is hopeless
 - Example: Generate all *n*-digits in lexicographic order, check that each such a number yields the optimal 0/1 Knapsack solution

Backtracking (S. D. Bruda)

CS 317, Fall 2024 1 / 11

n-QUEENS (CONT'D)

- Whole state space (n = 4): $4^4 = 256$ leaves and $1 + 4 + 4^2 + 4^3 + 4^4 = 341$ nodes
 - Slight optimization of the state space: no two queens can be on the same column (1 + 4 + 4 × 3 + 4 × 3 × 2 + 4 × 3 × 2 × 1 = 65 nodes)
 - Backtracking expands only 61 nodes

• For *n* = 8 we have 19, 173, 961 nodes overall, 109, 601 optimized, and 15, 721 expanded by backtracking

n-QUEENS

• Given an *n* × *n* chess board, and *n* queens, place each *i*-th queen on the *i*-th row so that no two queens check each other

Backtracking

Stefan D. Bruda

CS 317, Fall 2024

- Intermediate result: $\langle x_1, x_2, \ldots, x_i \rangle$, $i \leq n$
- Constraints: x_i and x_k , $j \neq k$ are neither the same nor on the same diagonal
- Decision: placement of one more queen
- Brute force: generate and then check all the possible sequences $\langle x_1, x_2, \ldots, x_n \rangle \rightarrow \Theta(n^{n+1})$ time
- Backtracking:

algorithm QUEENS(
$$\langle x_1, x_2, ..., x_i \rangle$$
):
if $i = n$ then return $\langle x_1, x_2, ..., x_n \rangle$
else
for $j = 1$ to n do
if PROMISING($\langle x_1, x_2, ..., x_i, j \rangle$)
L QUEENS($\langle x_1, x_2, ..., x_i, j \rangle$)
QUEENS($\langle x_1, x_2, ..., x_i, j \rangle$)
if $k \in 1$
safe \leftarrow TRUE
while $k < i \land safe$ do
if $x_i = x_k \lor |x_i - x_k| = i - k$ then
 $\lfloor safe \leftarrow FALSE \\ k \leftarrow k + 1$
return safe

- Common patterns:
 - Traverse tree of states (aka state space)
 - Different decisions yield different next states
 - Carry over enough information between recursive calls to check feasibility

OPTIMAL BST

TRAVELING SALESMAN

$$A_{i,j} = \begin{cases} p_i \text{ (root } i) & \text{if } i = j \\ \min_{i \le k \le j} (A_{i,k-1} + A_{k+1,j} + \sum_{m=i}^j p_m) \text{ (root } k) & \text{if } i < j \end{cases}$$

- Brute force: generate all possible trees, retain the optimal one
- Backtracking for the optimal cost: Backtracking for the optimal BST:

• When we solve a problem using backtracking we effectively solve a whole family of related problems

- Brute force: try all the permutations, retain the one with minimal cost
- Backtracking: With *g*(*i*, *S*) the length of the shortest path starting at *i* and going through all the vertices in *S* back to 1,

$$g(i, S) = \begin{cases} \min_{(i,j) \in E} (w(i,j)) & \text{if } S = \emptyset \\ \min_{j \in S} (w((i,j)) + g(j, S \setminus \{j\})) & \text{otherwise} \end{cases}$$

a	Igorithm GENERICBKT(<i>v</i>): if <i>v</i> is a solution then					
	Return solution					
	else					
	foreach child u of v do					
	if PROMISING(u) then					
	GENERICBKT(U)					

Effectively implements a depth-first traversal of the state space of the given problem

- Possibly pruning the state space using PROMISING
- Improvement over the brute force
- However, the call to PROMISING may be missing for some problems
 - In this case backtracking offers no advantage run time-wise over brute force

- The graph *m*-colorability problem: Given an undirected graph *G* and an integer *m*, can the vertices of *G* be coloured with at most *m* colours such that no two adjacent vertices have the same colour
 - The smallest possible *m* is called the chromatic number of *G*
 - The maximum chromatic number of a planar graph is 4

BETTER BACKTRACKING FOR OPTIMIZATION PROBLEMS

- In optimization problems we can keep track of the best solution found so far and avoid expanding nodes if they would lead to a worse solution: algorithm GENERICBKTOPT(v):
 - if v is a solution then Return solution
 - else if VALUE(v) is better than bestsofar then bestsofar \leftarrow VALUE(v)
 - else if PROMISING(v) then
 - **foreach** child \hat{u} of v **do** GENERICBKTOPT(u)
 - VALUE(v) is an upper/lower bound for all the solutions below v
 - bestsofar is a global variable maintained between different branches
 - PROMISING must reject nodes of less value than bestsofar
- Case in point: 0/1 Knapsack revisited
 - The state space is binary (left child = pick item, right child = do not pick item)
 - Each state stores three values
 - accumulated profit
 - accomulated weight
 - the upper bound VALUE() = the profit that can be made if the problem was fractional Knapsack
 - A node is not promising if either
 - The accumulated weight is larger than the capacity C, or
 - The upper bound is less than the maximum profit made so far

BRANCH & BOUND

- Similar to backtracking, but only for optimization problems
- Every time a state is considered its "value" is compared with the best solution candidate obtained so far
- Also changes the order of evaluation from depth first to
 - Breadth-first branch & bound
 - Best-first branch & bound where each node is associated a bound that denotes how "good" that node is

algorithm BRANCH&BOUND(v, bestsofar):

- open = queue → breadth-first branch & bound
- open = priority queue with key
 VALUE → best-first branch & bound

Backtracking (S. D. Bruda)

BRANCH & BOUND (CONT'D)

Obj:	1	2	3	4		
p	40	30	50	10		
W	2	5	10	5		
p/w	20	6	5	2		
C=16						

Breadth-first

When it is time to enqueue (2,3) its bound (82) is larger than *bestsofar* (70) so we enqueue and later expand. However, by the time we dequeue it *bestsofar* has already changed to 98.

Substantially smaller tree than in the case of breadth-first branch & bound.