Backtracking

Stefan D. Bruda

CS 317, Fall 2025

WHEN DYNAMIC PROGRAMMING DOES NOT WORK

- We use backtracking
 - Commonly used to make a sequence of decisions to build a recursively defined solution satisfying given constraints
 - In each recursive call we make exactly one decision which is consistent with all the previous decisions
 - Example:

```
algorithm RECKNAPSACK(i,C,n,p,w): (handle the i-th object)

if i > n then return (0,\langle\rangle)

else
 \begin{pmatrix} (p_-,X_-) \leftarrow \mathsf{RECKNAPSACK}(i+1,C,n,p,w) & (\mathsf{do}\ \mathsf{not}\ \mathsf{pick}\ \mathsf{item}\ i) \\ \mathsf{if}\ w_i \leq C\ \mathsf{then} \\ & |\ (p_+,X_+) \leftarrow \mathsf{RECKNAPSACK}(i+1,C-w_i,n,p,w) & (\mathsf{pick}\ \mathsf{item}\ i\ \mathsf{if}\ \mathsf{we}\ \mathsf{can}) \\ \mathsf{else} \\ & |\ (p_+,X_+) \leftarrow (0,\langle\rangle) \\ & |\ \mathsf{return}\ \mathsf{MaxFst}(\{(p_-,\langle 0\rangle+X_-),(p_++w_i,\langle 1\rangle+X_+)\}) \end{pmatrix}
```

- Alternative to backtracking: brute force
 - Generate all possible complete sequences of decisions one by one and check if they yield a solution
 - Backtracking has a chance of doing better since it stops when a sequence is hopeless
 - Example: Generate all *n*-digits in lexicographic order, check that each such a number yields the optimal 0/1 Knapsack solution

Backtracking (S. D. Bruda) CS 317, Fall 2025 1 / 11

- Given an $n \times n$ chess board, and n queens, place each i-th queen on the i-th row so that no two queens check each other
 - Intermediate result: $\langle x_1, x_2, \dots, x_i \rangle$, $i \leq n$
 - Constraints: x_i and x_k , $j \neq k$ are neither the same nor on the same diagonal
 - Decision: placement of one more gueen
- Brute force: generate and then check all the possible sequences $\langle x_1, x_2, \dots, x_n \rangle \to \Theta(n^{n+1})$ time
- Backtracking:

```
algorithm QUEENS(\langle x_1, x_2, \dots, x_i \rangle):

if i = n then return \langle x_1, x_2, \dots, x_n \rangle
else

for j = 1 to n do

if PROMISING(\langle x_1, x_2, \dots, x_i, j \rangle)
then

QUEENS(\langle x_1, x_2, \dots, x_i, j \rangle)

QUEENS(\langle x_1, x_2, \dots, x_i, j \rangle)

algorithm PROMISING(\langle x_1, x_2, \dots, x_i \rangle):

k \leftarrow 1
safe \leftarrow TRUE
while k < i \wedge safe do

if x_i = x_k \vee |x_i - x_k| = i - k then

k \leftarrow k + 1
return safe
```

- Common patterns:
 - Traverse tree of states (aka state space)
 - Different decisions yield different next states
 - Carry over enough information between recursive calls to check feasibility

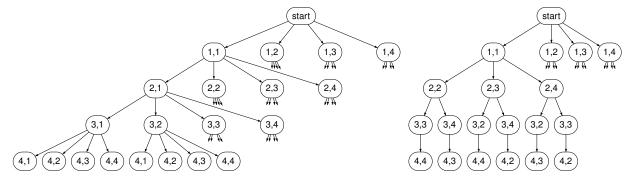
Backtracking (S. D. Bruda)

CS 317, Fall 2025

2/11

n-Queens (cont'd)

- Whole state space (n = 4): $4^4 = 256$ leaves and $1 + 4 + 4^2 + 4^3 + 4^4 = 341$ nodes
 - Slight optimization of the state space: no two queens can be on the same column (1 + 4 + 4 \times 3 + 4 \times 3 \times 2 + 4 \times 3 \times 2 \times 1 = 65 nodes)
 - Backtracking expands only 61 nodes



• For n = 8 we have 19,173,961 nodes overall, 109,601 optimized, and 15,721 expanded by backtracking

Backtracking (S. D. Bruda) CS 317, Fall 2025 3 / 11

$$A_{i,j} = \begin{cases} p_i \text{ (root } i) & \text{if } i = j \\ \min_{i \le k \le j} (A_{i,k-1} + A_{k+1,j} + \sum_{m=i}^{j} p_m) \text{ (root } k) & \text{if } i < j \end{cases}$$

- Brute force: generate all possible trees, retain the optimal one
- Backtracking for the optimal cost:Backtracking for the optimal BST:

```
algorithm COSTBST(i,j):

if i = j then return p_i
else if i > j then return 0
else

m \leftarrow \infty
for k = i to j do
b \leftarrow \text{COSTBST}(i, k - 1)
c \leftarrow \text{COSTBST}(k + 1, j)
a \leftarrow b + c + \sum_{m=i}^{j} p_m
if a < m then
m \leftarrow a
return m
```

```
algorithm OPTBST(i,j):

if i = j then return (p_i, \text{NODE}(i))
else if i > j then return (0, \text{NULL})
else

m \leftarrow (\infty, \text{NULL})
for k = i to j do
(b, l) \leftarrow \text{OPTBST}(i, k - 1)
(c, r) \leftarrow \text{OPTBST}(k + 1, j)
a \leftarrow b + c + \sum_{m=i}^{j} p_m
if a < m then
m \leftarrow (a, \text{NODE}(k, l, r))
return m
```

 When we solve a problem using backtracking we effectively solve a whole family of related problems

Backtracking (S. D. Bruda)

CS 317, Fall 2025

4 / 11

<u>Traveling salesman</u>

- Brute force: try all the permutations, retain the one with minimal cost
- Backtracking: With g(i, S) the length of the shortest path starting at i and going through all the vertices in S back to 1,

$$g(i,S) = \left\{ egin{array}{ll} \min_{(i,j) \in E}(\textit{w}(i,j)) & ext{if } S = \emptyset \ \min_{j \in S}(\textit{w}((i,j)) + g(j,S \setminus \{j\})) & ext{otherwise} \end{array}
ight.$$

```
algorithm TS(i, S):
                                                                algorithm TSX(i, S):
      if S = \emptyset then
                                                                       if S = \emptyset then
             return min_{(i,j)\in E}(w(i,j))
                                                                             return (\min_{(i,j)\in E}(w(i,j)), \langle i,j\rangle)
      else
                                                                       else
             m \leftarrow \infty
                                                                             (m,k) \leftarrow (\infty,0) forall j \in S do
             forall j \in S do
                   a \leftarrow w((i,j)) + \mathsf{TS}(j, S \setminus \{j\})
                                                                                    (a,b) \leftarrow \mathsf{TSX}(j,S \setminus \{j\})
                   if a < m then
                                                                                    a \leftarrow a + w((i,j))
                     \perp m \leftarrow a
                                                                                    if a < m then
                                                                                      (m,k) \leftarrow (a,b)
            return m
                                                                             return (m, \langle i \rangle + k)
```

Backtracking (S. D. Bruda) CS 317, Fall 2025 5 / 11

GENERAL FORM OF BACKTRACKING


```
algorithm GENERICBKT(v):

if v is a solution then

Return solution
else
foreach child u of v do
if PROMISING(u) then
GENERICBKT(u)
```

Effectively implements a depth-first traversal of the state space of the given problem

- Possibly pruning the state space using PROMISING
- Improvement over the brute force
- However, the call to PROMISING may be missing for some problems
 - In this case backtracking offers no advantage run time-wise over brute force

Backtracking (S. D. Bruda)

CS 317, Fall 2025

6/11

GRAPH COLORABILITY

- The graph *m*-colorability problem: Given an undirected graph *G* and an integer *m*, can the vertices of *G* be coloured with at most *m* colours such that no two adjacent vertices have the same colour
 - The smallest possible *m* is called the chromatic number of *G*
 - The maximum chromatic number of a planar graph is 4

```
algorithm PROMISING(\langle c_1, \ldots, c_i \rangle):j \leftarrow 1safe \leftarrow TRUEwhile j < i \land safe doif (i,j) \in E \land c_i = c_j thensafe \leftarrow FALSEj \leftarrow j + 1return safe
```

Backtracking (S. D. Bruda) CS 317, Fall 2025 7 / 11

BETTER BACKTRACKING FOR OPTIMIZATION PROBLEMS

 In optimization problems we can keep track of the best solution found so far and avoid expanding nodes if they would lead to a worse solution:
 algorithm Generic Bkt Opt(v):

if v is a solution then Return solution else if Value(v) is better than bestsofar then bestsofar \leftarrow Value(v) else if Promising(v) then _ foreach child u of v do GenericBktOpt(u)

- VALUE(v) is an upper/lower bound for all the solutions below v
- bestsofar is a global variable maintained between different branches
- PROMISING must reject nodes of less value than bestsofar
- Case in point: 0/1 Knapsack revisited
 - The state space is binary (left child = pick item, right child = do not pick item)
 - Each state stores three values
 - accumulated profit
 - accomulated weight
 - the upper bound VALUE() = the profit that can be made if the problem was fractional Knapsack
 - A node is not promising if either
 - The accumulated weight is larger than the capacity C, or
 - The upper bound is less than the maximum profit made so far

Backtracking (S. D. Bruda)

CS 317, Fall 2025

0/11

0/1 KNAPSACK REVISITED


```
2
                                                                                                                                      3
                                                                                                                                                 4
                                                                                                   Obi:
                                                                                                                            30
                                                                                                                                                 10
                                                                                                                 40
                                                                                                                                      50
                                                                                                   р
algorithm KNAPSACK():
                                                                                                                 2
                                                                                                   W
                                                                                                                           5
                                                                                                                                      10
                                                                                                                                                 5
        bestsofar ← 0
                                                                                                                                                 2
       for i = 1 to n do result: \leftarrow FALSE
                                                                                                                 20
                                                                                                                           6
                                                                                                                                      5
                                                                                                   p/w
       KNAPSACKREC(0, 0, 0)
                                                                                                   C = 16
       return (bestsofar, bestset)
                                                                                                                                                     (0, 0)
algorithm KNAPSACKREC(i, profit, weight):
       if weight \leq C \land profit > bestsofar then
               bestsofar ← profit
              bestset ← result
                                                                                                                                                     $115
       if PROMISING(i) then
                                                                            Item 1 \[ \bigsup \frac{$40}{2} \]
                                                                                                                                (1, 1)
                                                                                                                                                                         (1, 2)
               result_{i+1} \leftarrow TRUE
               \texttt{KnapsackRec}(i+1, \textit{profit}+p_{i+1}, \textit{weight}+w_{i+1})
               \textit{result}_{i+1} \leftarrow \texttt{FALSE}
                                                                                                                                                                           0
                                                                                                                                 $115
                                                                                                                                                                          $82
               KNAPSACKREC(i + 1, profit, weight)
                                                                            Item 2 [ $30 ]
                                                                                                          (2.1)
                                                                                                                                                       (2.2)
algorithm PROMISING(i):
                                                                                                          $70
                                                                                                                                                       $40
       if weight \geq C then return FALSE
                                                                                                          $115
                i \leftarrow i + 1
                bound ← profit
                                                                            Item 3 $50
                W \leftarrow weight
                                                                                               (3, 1)
                                                                                                                     (3, 2)
                                                                                                                                            (3, 3)
                                                                                                                                                                   (3, 4)
                while j \leq n \wedge W + w_j \leq C do
                       \widetilde{W} \leftarrow W + w_i
                                                                                                $120
                                                                                                                    $70
                                                                                                                                              12
                                                                                                 17
                       bound \leftarrow bound + p_i
                                                                                                                     $80
                      j \leftarrow j + 1
                                                                            Item 4 \[ \bigsep \frac{$10}{5} \]
                                                                                                                            (4, 2)
                                                                                                                                    (4, 3)
                                                                                                                                                         (4, 4)
                       bound \leftarrow bound + (C - W) \times p_i/w_i
                                                                                                                                        $100
               return bound > profit
                                                                                                          12
                                                                                                                                                        12
```


- Similar to backtracking, but only for optimization problems
- Every time a state is considered its "value" is compared with the best solution candidate obtained so far
- Also changes the order of evaluation from depth first to
 - Breadth-first branch & bound
 - Best-first branch & bound where each node is associated a bound that denotes how "good" that node is

algorithm BRANCH&BOUND(v, bestsofar):

```
\begin{array}{c} \textit{open} \leftarrow \langle \rangle \\ \textit{ENQUEUE}(v,\textit{open}) \\ \textit{bestsofar} \leftarrow \textit{VALUE}(v) \\ \textit{while } \textit{open} \neq \langle \rangle \textit{ do} \\ & u \leftarrow \textit{DEQUEUE}(\textit{open}) \\ \textit{foreach } \textit{child } u \textit{ of } v \textit{ do} \\ & | if \textit{VALUE}(u) > \textit{bestsofar then} \\ & | \textit{bestsofar} \leftarrow \textit{VALUE}(u) \\ & | \textit{if } \textit{BOUND}(u) > \textit{bestsofar then} \\ & | \textit{ENQUEUE}(u,\textit{open}) \end{array}
```

- open = queue → breadth-first branch & bound
- open = priority queue with key
 VALUE → best-first branch & bound

Backtracking (S. D. Bruda)

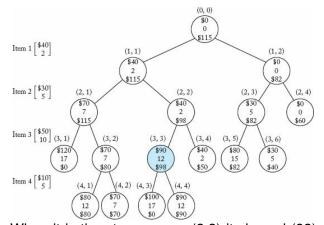
CS 317, Fall 2025 1

10 / 1

BRANCH & BOUND (CONT'D)

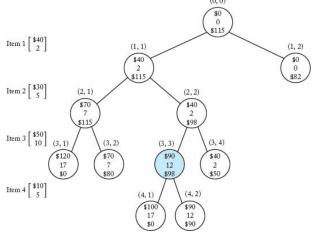
Obj:	1	2	3	4
р	40	30	50	10
W	2	5	10	5
p/w	20	6	5	2
C=16				

Breadth-first



When it is time to enqueue (2,3) its bound (82) is larger than *bestsofar* (70) so we enqueue and later expand. However, by the time we dequeue it *bestsofar* has already changed to 98.

Best-first



Substantially smaller tree than in the case of breadth-first branch & bound.

Backtracking (S. D. Bruda) CS 317, Fall 2025 11 / 11