Backtracking

Stefan D. Bruda

CS 317, Fall 2025

WHEN DYNAMIC PROGRAMMING DOES NOT WORK

@ We use backtracking
e Commonly used to make a sequence of decisions to build a recursively
defined solution satisfying given constraints
@ In each recursive call we make exactly one decision which is consistent with
all the previous decisions
o Example:

algorithm RECKNAPSACK(i, C, n, p, w): (handle the i-th object)
if i > nthen return (0, ())
else

(p—, X—=) + RECKNAPSACK(i+ 1,C,n,p,w) (do not pick item /)
if w; < C then

\ (p+, X+) < RECKNAPSACK(i+1,C—wj,n,p,w) (pickitem /if we can)
else

L (p+, X5) < (0,¢))
| return MAXFST({(p—, (0) + X_), (p+ + w;, (1) + X1)})

@ Alternative to backtracking: brute force

o Generate all possible complete sequences of decisions one by one and
check if they yield a solution

e Backtracking has a chance of doing better since it stops when a sequence is
hopeless

e Example: Generate all n-digits in lexicographic order, check that each such a
number yields the optimal 0/1 Knapsack solution

Backtracking (S. D. Bruda) CS 317, Fall 2025

1/11

n-QUEENS

@ Given an n x nchess board, and n queens, place each i-th queen on the
i-th row so that no two queens check each other
o Intermediate result: (x1,Xx2,...,X;), I <n
e Constraints: x; and xk, j # k are neither the same nor on the same diagonal
e Decision: placement of one more queen

@ Brute force: generate and then check all the possible sequences

(X1,X2,...,Xp) — ©(n") time
@ Backtracking:
algorithm QUEENS((xy, X2, ..., X;)): algorithm PROMISING((x1, X2, ..., Xj)):
if i = nthen return (xy,xo,..., Xpn) k1
else safe < TRUE
forj = 1to ndo while k < i A safe do .
if PROMISING((X1, X2, - - -, X;, /) if X; = X V |Xi — xx| =i — k then
then L safe + FALSE
| QUEENS({x1,X2,...,Xj,J)) K<+ k+1
L return safe

@ Common patterns:
o Traverse tree of states (aka state space)
@ Different decisions yield different next states

e Carry over enough information between recursive calls to check feasibility

Backtracking (S. D. Bruda) CS 317, Fall 2025 2/11

n-QUEENS (CONT’D)

@ Whole state space (n = 4): 4* = 256 leaves and
144+ 42+ 43 + 4% = 341 nodes
e Slight optimization of the state space: no two queens can be on the same
column (14+44+4x3+4x3x2+4+4x3x2x1=65nodes)
e Backtracking expands only 61 nodes

@ For n= 8 we have 19,173,961 nodes overall, 109,601 optimized, and
15,721 expanded by backtracking

Backtracking (S. D. Bruda) CS 317, Fall 2025 3/11

OPTIMAL BST

A”_{p,-(rooti) . ifi=j
W min,-gkgj(A,-,kq + Ak+1,j + ij:i pm) (root k) ifi<j

@ Brute force: generate all possible trees, retain the optimal one

@ Backtracking for the optimal cost: @ Backtracking for the optimal BST:

algorithm CosTBST(/, j): algorithm OPTBST(/,):
if i = jthen return p; if i = j then return (p;, NODE(/))
else if i > jthen return 0 else if / > j then return (0, NULL)
else else
m<—oo m < (oo, NULL)
forkb:/tc%jsd%s_l__k 1 for k = itojdo
— T lhK—1 b,l) <~ OPTBST(i,k — 1
C COSTBSTgk + 1,/5 %c, r) <~ OPTBST(k + 1,/))
acbtc+S) pm a<b+c+ Pm
if a < mthen if a < mthen
L m+«a | m <« (a, NODE(k,/,r))
L return m
L L returnm

@ When we solve a problem using backtrécking we effectively solve a whole
family of related problems

Backtracking (S. D. Bruda) CS 317, Fall 2025 4/11

TRAVELING SALESMAN

@ Brute force: try all the permutations, retain the one with minimal cost

@ Backtracking: With g(i, S) the length of the shortest path starting at / and
going through all the vertices in S back to 1,

’ minjes(W((/./)) + 9, S\ {/})) otherwise
algorithm TS(/, S): algorithm TSX(/, S):
if S = (then if S = (then
| return ming; yce(w(/,J)) | return (ming; jce(W(i,))), (i, /)
else else
m <— o0 (m, k) + (0, 0)
forall j € Sdo . . forall j € Sdo
a< w((i,/))+TS(, S\ {/}) (a,b) + TSX(j, S\ {j})
if a < mthen a<+ a+ w((i,)))
L m<a if a < mthen
return m | (m, k)« (a,b)
| return (m, (i) + k)

Backtracking (S. D. Bruda) CS 317, Fall 2025 5/11

GENERAL FORM OF BACKTRACKING

algorithm GENERICBKT(v):
if v is a solution then
| Return solution
else
foreach child v of v do
if PROMISING(u) then
| GENERICBKT(u)

Effectively implements a depth-first traversal of the state space of the given

problem

@ Possibly pruning the state space using PROMISING
@ Improvement over the brute force

@ However, the call to PROMISING may be missing for some problems
e In this case backtracking offers no advantage run time-wise over brute force

Backtracking (S. D. Bruda)

CS 317, Fall 2025 6/11

GRAPH COLORABILITY

@ The graph m-colorability problem: Given an undirected graph G and an
integer m, can the vertices of G be coloured with at most m colours such
that no two adjacent vertices have the same colour

e The smallest possible m is called the chromatic number of G
@ The maximum chromatic number of a planar graph is 4

algorithm CoLouRrs({cy,...,¢),G= (V,E)):

if i = nthen return (cy,.
else
forc =1to mdo

Backtracking (S. D. Bruda)

ey

if PROMISING((cq, . .
| CoLouRrs({cy,..

Cn>

.,Cj,C)) then
-5 Gy C>)

algorithm PROMISING((cq, ..., C})):
j+1
safe < TRUE
while j < i A safe do
if (/,j) € E A ¢; = ¢; then
| safe + FALSE
Jj<Jj+1
| return safe

CS 317, Fall 2025 7/11

BETTER BACKTRACKING FOR OPTIMIZATION

PROBLEMS

@ In optimization problems we can keep track of the best solution found so

far and avoid expanding nodes if they would lead to a worse solution:
algorithm GENERICBKTOPT(v):
if v is a solution then Return solution

else if VALUE(V) is better than bestsofar then bestsofar < VALUE(V)
else if PROMISING(V) then

| foreach child u of vdo GENERICBKTOPT(u)

o VALUE(v) is an upper/lower bound for all the solutions below v
e bestsofar is a global variable maintained between different branches
e PROMISING must reject nodes of less value than bestsofar
@ Case in point: 0/1 Knapsack revisited
e The state space is binary (left child = pick item, right child = do not pick item)
e Each state stores three values
@ accumulated profit
© accomulated weight

© the upper bound VALUE() = the profit that can be made if the problem was
fractional Knapsack
@ A node is not promising if either
@ The accumulated weight is larger than the capacity C, or
@ The upper bound is less than the maximum profit made so far
Backtracking (S. D. Bruda)

CS 317, Fall 2025 8/11

0/1 KNAPSACK REVISITED

algorithm KNAPSACK():

bestsofar <— 0

fori = 1tondo result; <— FALSE
KNAPSACKREC(0, 0, 0)

return (bestsofar, bestset)

algorithm KNAPSACKREC(/, profit, weight):

if weight < C A profit > bestsofar then
bestsofar <— profit

bestset < result

if PROMISING(/) then
result; 1 <— TRUE
KNAPSACKREC(i+1, profit+p;, 1 , weight+w;, 1)
result; 41— FALSE
KNAPSACKREC(i + 1, profit, weight)

algorithm PROMISING(/):

if weight > C then return FALSE

else

J—i+1

bound < profit

W <« weight

whilej < n A W+W/- < Cdo

W<—W+Wj

{ bound < bound+pj
j— i+

if Kk < nthen

|_ bound < bound + (C — W) x p]-/w]-

return bound > profit

Backtracking (S. D. Bruda)

CS 317, Fall 2025

9/11

BRANCH & BOUND

@ Similar to backtracking, but only for optimization problems

@ Every time a state is considered its “value” is compared with the best
solution candidate obtained so far

@ Also changes the order of evaluation from depth first to

@ Breadth-first branch & bound
e Best-first branch & bound where each node is associated a bound that
denotes how “good” that node is

algorithm BRANCH&BOUND(v, bestsofar):
open « ()

ENQUEUE(v, open)

bestsofar <— VALUE(V)

while open # () do @ open = queue — breadth-first
u < DEQUEUE(open) branch & bound
foreach child v of v do
if VALUE(u) > bestsofar then @ open = priority queue with key
| bestsofar < VALUE(u) VALUE — best-first branch & bound

if BOUND(u) > bestsofar then
| ENQUEUE(u, open)

Backtracking (S. D. Bruda) CS 317, Fall2025 10/ 11

BRANCH & BOUND (CONT’D)
Obj: |1 2 3 4

p 40 30 50 10

w 2 5 10 5

p/w|20 6 5 2

C=16

@ Breadth-first @ Best-first

0,0 (0,0)

Irem 1 [';U]

Itern 2 [!;D]

G4 69 5

Honh [10 1 3,1)

When it is time to enqueue (2,3) its bound (82)
is larger than bestsofar (70) so we enqueue and - gpstantially smaller tree than in the case of
later expand. However, by the time we dequeue preadth-first branch & bound.

it bestsofar has already changed to 98.

11/11

Backtracking (S. D. Bruda) CS 317, Fall 2025

