
Backtracking

Stefan D. Bruda

CS 317, Fall 2025

WHEN DYNAMIC PROGRAMMING DOES NOT WORK

We use backtracking
Commonly used to make a sequence of decisions to build a recursively
defined solution satisfying given constraints
In each recursive call we make exactly one decision which is consistent with
all the previous decisions
Example:
algorithm RECKNAPSACK(i,C, n, p,w): (handle the i-th object)

if i > n then return (0, ⟨⟩)
else

(p−,X−)← RECKNAPSACK(i + 1,C, n, p,w) (do not pick item i)
if wi ≤ C then

(p+,X+)← RECKNAPSACK(i+1,C−wi , n, p,w) (pick item i if we can)
else

(p+,X+)← (0, ⟨⟩)
return MAXFST({(p−, ⟨0⟩+ X−), (p+ + wi , ⟨1⟩+ X+)})

Alternative to backtracking: brute force
Generate all possible complete sequences of decisions one by one and
check if they yield a solution
Backtracking has a chance of doing better since it stops when a sequence is
hopeless
Example: Generate all n-digits in lexicographic order, check that each such a
number yields the optimal 0/1 Knapsack solution

Backtracking (S. D. Bruda) CS 317, Fall 2025 1 / 11

n-QUEENS

Given an n × n chess board, and n queens, place each i-th queen on the
i-th row so that no two queens check each other

Intermediate result: ⟨x1, x2, . . . , xi⟩, i ≤ n
Constraints: xi and xk , j ̸= k are neither the same nor on the same diagonal
Decision: placement of one more queen

Brute force: generate and then check all the possible sequences
⟨x1, x2, . . . , xn⟩ → Θ(nn+1) time
Backtracking:
algorithm QUEENS(⟨x1, x2, . . . , xi ⟩):

if i = n then return ⟨x1, x2, . . . , xn⟩
else

for j = 1 to n do
if PROMISING(⟨x1, x2, . . . , xi , j⟩)
then

QUEENS(⟨x1, x2, . . . , xi , j⟩)

algorithm PROMISING(⟨x1, x2, . . . , xi ⟩):
k ← 1
safe← TRUE
while k < i ∧ safe do

if xi = xk ∨ |xi − xk | = i − k then
safe← FALSE

k ← k + 1
return safe

Common patterns:
Traverse tree of states (aka state space)

Different decisions yield different next states

Carry over enough information between recursive calls to check feasibility

Backtracking (S. D. Bruda) CS 317, Fall 2025 2 / 11

n-QUEENS (CONT’D)

Whole state space (n = 4): 44 = 256 leaves and
1 + 4 + 42 + 43 + 44 = 341 nodes

Slight optimization of the state space: no two queens can be on the same
column (1 + 4 + 4 × 3 + 4 × 3 × 2 + 4 × 3 × 2 × 1 = 65 nodes)
Backtracking expands only 61 nodes

4,1 4,2 4,3 4,4 4,1 4,2 4,3 4,4

3,1 3,2 3,3 3,4

2,1 2,2 2,3 2,4

1,1 1,2 1,3 1,4

start

4,4 4,3 4,4 4,2 4,3 4,2

3,3 3,4 3,2 3,4 3,2 3,3

2,2 2,3 2,4

1,1 1,2 1,3 1,4

start

For n = 8 we have 19,173,961 nodes overall, 109,601 optimized, and
15,721 expanded by backtracking

Backtracking (S. D. Bruda) CS 317, Fall 2025 3 / 11

OPTIMAL BST

Ai,j =

{
pi (root i) if i = j
mini≤k≤j(Ai,k−1 + Ak+1,j +

∑j
m=i pm) (root k) if i < j

Brute force: generate all possible trees, retain the optimal one

Backtracking for the optimal cost:
algorithm COSTBST(i, j):

if i = j then return pi
else if i > j then return 0
else

m←∞
for k = i to j do

b ← COSTBST(i, k − 1)
c ← COSTBST(k + 1, j)
a← b + c +

∑j
m=i pm

if a < m then
m← a

return m

Backtracking for the optimal BST:
algorithm OPTBST(i, j):

if i = j then return (pi , NODE(i))
else if i > j then return (0, NULL)
else

m← (∞, NULL)
for k = i to j do

(b, l)← OPTBST(i, k − 1)
(c, r)← OPTBST(k + 1, j)
a← b + c +

∑j
m=i pm

if a < m then
m← (a, NODE(k , l, r))

return m

When we solve a problem using backtracking we effectively solve a whole
family of related problems

Backtracking (S. D. Bruda) CS 317, Fall 2025 4 / 11

TRAVELING SALESMAN

Brute force: try all the permutations, retain the one with minimal cost
Backtracking: With g(i ,S) the length of the shortest path starting at i and
going through all the vertices in S back to 1,

g(i ,S) =

{
min(i,j)∈E(w(i , j)) if S = ∅
minj∈S(w((i , j)) + g(j ,S \ {j})) otherwise

algorithm TS(i,S):
if S = ∅ then

return min(i,j)∈E (w(i, j))
else

m←∞
forall j ∈ S do

a← w((i, j))+ TS(j,S \ {j})
if a < m then

m← a

return m

algorithm TSX(i,S):
if S = ∅ then

return (min(i,j)∈E (w(i, j)), ⟨i, j⟩)
else

(m, k)← (∞, 0)
forall j ∈ S do

(a, b)← TSX(j,S \ {j})
a← a + w((i, j))
if a < m then

(m, k)← (a, b)

return (m, ⟨i⟩+ k)

Backtracking (S. D. Bruda) CS 317, Fall 2025 5 / 11

GENERAL FORM OF BACKTRACKING

algorithm GENERICBKT(v):
if v is a solution then

Return solution
else

foreach child u of v do
if PROMISING(u) then

GENERICBKT(u)

Effectively implements a depth-first traversal of the state space of the given
problem

Possibly pruning the state space using PROMISING

Improvement over the brute force
However, the call to PROMISING may be missing for some problems

In this case backtracking offers no advantage run time-wise over brute force

Backtracking (S. D. Bruda) CS 317, Fall 2025 6 / 11

GRAPH COLORABILITY

The graph m-colorability problem: Given an undirected graph G and an
integer m, can the vertices of G be coloured with at most m colours such
that no two adjacent vertices have the same colour

The smallest possible m is called the chromatic number of G
The maximum chromatic number of a planar graph is 4

algorithm COLOURS(⟨c1, . . . , ci ⟩,G = (V ,E)):
if i = n then return ⟨c1, . . . , cn⟩
else

for c = 1 to m do
if PROMISING(⟨c1, . . . , ci , c⟩) then

COLOURS(⟨c1, . . . , ci , c⟩)

algorithm PROMISING(⟨c1, . . . , ci ⟩):
j ← 1
safe← TRUE
while j < i ∧ safe do

if (i, j) ∈ E ∧ ci = cj then
safe← FALSE

j ← j + 1
return safe

Backtracking (S. D. Bruda) CS 317, Fall 2025 7 / 11

BETTER BACKTRACKING FOR OPTIMIZATION

PROBLEMS

In optimization problems we can keep track of the best solution found so
far and avoid expanding nodes if they would lead to a worse solution:
algorithm GENERICBKTOPT(v):

if v is a solution then Return solution
else if VALUE(v) is better than bestsofar then bestsofar← VALUE(v)
else if PROMISING(v) then

foreach child u of v do GENERICBKTOPT(u)

VALUE(v) is an upper/lower bound for all the solutions below v
bestsofar is a global variable maintained between different branches
PROMISING must reject nodes of less value than bestsofar

Case in point: 0/1 Knapsack revisited
The state space is binary (left child = pick item, right child = do not pick item)
Each state stores three values

1 accumulated profit
2 accomulated weight
3 the upper bound VALUE() = the profit that can be made if the problem was

fractional Knapsack
A node is not promising if either

The accumulated weight is larger than the capacity C, or
The upper bound is less than the maximum profit made so far

Backtracking (S. D. Bruda) CS 317, Fall 2025 8 / 11

0/1 KNAPSACK REVISITED

algorithm KNAPSACK():
bestsofar ← 0
for i = 1 to n do resulti ← FALSE
KNAPSACKREC(0, 0, 0)
return (bestsofar, bestset)

algorithm KNAPSACKREC(i, profit, weight):
if weight ≤ C ∧ profit > bestsofar then

bestsofar ← profit
bestset ← result

if PROMISING(i) then
resulti+1 ← TRUE

KNAPSACKREC(i+1, profit+pi+1, weight+wi+1)
resulti+1 ← FALSE

KNAPSACKREC(i + 1, profit, weight)

algorithm PROMISING(i):
if weight ≥ C then return FALSE
else

j ← i + 1
bound ← profit
W ← weight
while j ≤ n ∧ W + wj ≤ C do

W ← W + wj
bound ← bound + pj
j ← j + 1

if k ≤ n then
bound ← bound + (C − W) × pj/wj

return bound > profit

Obj: 1 2 3 4
p 40 30 50 10
w 2 5 10 5
p/w 20 6 5 2
C = 16

We have already ordered the items according to pi/wi. For simplicity, we chose
values of pi and wi that make pi/wi an integer. In general, this need not be the case.
Figure 5.14 shows the pruned state space tree produced by using the backtracking
considerations just discussed. The total profit, total weight, and bound are specified
from top to bottom at each node. These are the values of the variables profit, weight,
and bound mentioned in the previous discussion. The maximum profit is found at the
node shaded in color. Each node is labeled with its level and its position from the
left in the tree. For example, the shaded node is labeled (3, 3) because it is at level 3
and it is the third node from the left at that level. Next we present the steps that
produced the pruned tree. In these steps we refer to a node by its label.
Figure 5.14 The pruned state space tree produced using backtracking in Example 5.6. Stored at each node from
top to bottom are the total profit of the items stolen up to the node, their total weight, and the bound on the total
profit that could be obtained by expanding beyond the node. The optimal solution is found at the node shaded in
color. Each nonpromising node is marked with a cross.

1. Set maxprofit to $0.
2. Visit node (0, 0) (the root).Backtracking (S. D. Bruda) CS 317, Fall 2025 9 / 11

BRANCH & BOUND

Similar to backtracking, but only for optimization problems
Every time a state is considered its “value” is compared with the best
solution candidate obtained so far
Also changes the order of evaluation from depth first to

Breadth-first branch & bound
Best-first branch & bound where each node is associated a bound that
denotes how “good” that node is

algorithm BRANCH&BOUND(v , bestsofar):
open← ⟨⟩
ENQUEUE(v , open)
bestsofar← VALUE(v)
while open ̸= ⟨⟩ do

u ← DEQUEUE(open)
foreach child u of v do

if VALUE(u) > bestsofar then
bestsofar← VALUE(u)

if BOUND(u) > bestsofar then
ENQUEUE(u, open)

open = queue → breadth-first
branch & bound

open = priority queue with key
VALUE → best-first branch & bound

Backtracking (S. D. Bruda) CS 317, Fall 2025 10 / 11

BRANCH & BOUND (CONT’D)
Obj: 1 2 3 4
p 40 30 50 10
w 2 5 10 5
p/w 20 6 5 2
C = 16

Breadth-first

Figure 6.2 The pruned state space tree produced using breadth-first search with branch-and-bound pruning in
Example 6.1. Stored at each node from top to bottom are the total profit of the items stolen up to that node, their
total weight, and the bound on the total profit that could be obtained by expanding beyond the node. The node
shaded in color is the one at which an optimal solution is found.

However, in the case of a breadth-first search, this node is the third node visited.
At the time it is visited, the value of maxprofit is only $40. Because its bound $82
exceeds maxprofit at this point, we expand beyond the node. Last of all, in a simple
breadth-first search with branch-and-bound pruning, the decision of whether or not to
visit a node’s children is made at the time the node is visited. That is, if the branches
to the children are pruned, they are pruned when the node is visited. Therefore, when
we visit node (2, 3), we decide to visit its children because the value of maxprofit at
that time is only $70, whereas the bound for the node is $82. Unlike a depth-first
search, in a breadth-first search the value of maxprofit can change by the time we
actually visit the children. In this case, maxprofit has a value of $90 by the time we
visit the children of node (2, 3). We then waste our time checking these children. We
avoid this in our best-first search, which is described in the next subsection.

Now that we have illustrated the technique, we present a general algorithm for
breadth-first search with branch-and-bound pruning. Although we refer to the state
space tree T as the input to this general-purpose algorithm, in actual applications the
state space tree exists only implicitly. The parameters of the problem are the actual
inputs to the algorithm and determine the state space tree T .

When it is time to enqueue (2,3) its bound (82)
is larger than bestsofar (70) so we enqueue and
later expand. However, by the time we dequeue
it bestsofar has already changed to 98.

Best-first

steps. Furthermore, we only mention when a node is found to be nonpromising; we do
not mention when it is found to be promising.

The steps are as follows:

1. Visit node (0, 0) (the root).
(a) Set its profit and weight to $0 and 0.
(b) Compute its bound to be $115. (See Example 5.6 for the computation.)
(c) Set maxprofit to 0.

2. Visit node (1, 1).
(a) Compute its profit and weight to be $40 and 2.
(b) Because its weight 2 is less than or equal to 16, the value of W, and its profit

$40 is greater than $0, the value of maxprofit, set maxprofit to $40.
(c) Compute its bound to be $115.

3. Visit node (1, 2).
(a) Compute its profit and weight to be $0 and 0.
(b) Compute its bound to be $82.

Figure 6.3 The pruned state space tree produced using best-first search with branch-and-bound pruning in
Example 6.2. Stored at each node from top to bottom are the total profit of the items stolen up to the node, their
total weight, and the bound on the total profit that could be obtained by expanding beyond the node. The node
shaded in color is the one at which an optimal solution is found.

4. Determine promising, unexpanded node with the greatest bound.
(a) Because node (1, 1) has a bound of $115 and node (1, 2) has a bound of $82,

Substantially smaller tree than in the case of
breadth-first branch & bound.

Backtracking (S. D. Bruda) CS 317, Fall 2025 11 / 11

