HAND IN
answers recorded
Student Number on question paper

Name

BISHOP’S UNIVERSITY

B
SN

DEePARTMENT OF COMPUTER SCIENCE
CS 317
FIRST EXAMINATION
29 October 2025

Instructor: Stefan D. Bruda

Instructions

* This examination is 80 minutes in length and is open book. You are allowed to use any kind of printed
documentation. Electronic devices are not permitted. You are not allowed to share material with your
colleagues. Any violation of these rules will result in the complete forfeiture of the examination.

® There is no accident that the total number of marks add up to the length of the test in minutes. The
number of marks awarded for each question should give you an estimate on how much time you are
supposed to spend answering the question.

* To obtain full marks provide all the pertinent details. This being said, do not give unnecessarily long
answers. In principle, all your answers should fit in the space provided for this purpose. If you need
more space, use the back of the pages or attach extra sheets of paper. However, if your answer is not
(completely) contained in the respective space, clearly mention within this space where I can find it.

¢ The number of marks for each question appears in square brackets right after the question number.
If a question has sub-questions, then the number of marks for each sub-question is also provided.

When you are instructed to do so, turn the page to begin the test.

The highest grade was 41 (103%), the lowest

1 abc 10 / 9 grade was 7 (18%), and the average grade was
7 10 / 10 20 (50%). Here is the grade distribution:
3 abed |25 / 25 gj: % "
4 5 / 7 o2 I ()
16
5 0/ 9 e T
- I
6 20 / 20 A ——m ©
Total: | 80 / 80 = 40 / 40 2032 HE ()
33-3c ()

37-40 M)

1. [9] For each relation below find all the X € {O, Q, ©, 0, w} that make the relation true. Justify
your answer using limits.

(a) [3]2"% € X(8")

ANSWER:

n+2

limn_mzaT = limnqmwﬁ = lirnn_wow;_2 = 0, so 2"*2 € 0(8"), and therefore

X e {o,O}.

(b) [3]logn € X(logn?)

ANSWER:

1imy; —sc0 lf)og%nz = limy; o0 b{;’% = 1imy; Jse0 loglﬁ%gn =1/2 =¢,sologn € O(log n?) which
means that X € {®, O, Q}.
(©) [3] ¥n € X(logn)
ANSWER:
/
We apply 1'Hospital’s and so lim, e % = limy—e % = limy—e ;an?/g =

limy, —e0 ”1/221” = 00,50 V1 € w(logn), and so X € {w, Q}.

Page 1 of 7

2. [10] What is the complexity of the following algorithm. Explain formally how you counted
the steps and then give the complexity in ® notation.
i1 j<1
fori=1ton do

while j < n do
Ai «— A] +1
]' —] X 3

while j > 1 do

L Aj — A;-1
jeijl2

for j =1ton do PriNt(A;)

ANSWER:

For the first while loop j starts at 1 and triples at every iteration. Therefore at iteration k we
will have j = 3¥. The loop terminates as soon as j = 3% = n that is, k = logyn = ®(logn). It

follows that the loop executes @(log 1) times.

For the second while loop, j starts where the first loop left it that is, j = n. j is then halved at
each iteration, meaning that at iteration k we have j = n/2¥. The loop terminates as soon as

j =n/2¥ = 1thatis, n = 2F or k = log, n. Therefore this loop executes O(log) times.

The two while loops execute n times in the first for loop, followed by a ©(1)-time code
executed n times in the second for loop. Therefore T(n) = n(®(logn) + O(logn)) + nO(1) =

O(nlogn +n) = O(nlogn).

Page 2 of 7

3. [25] Consider the following algorithm:

algorithm FinbMax(A, n):
if n = 1 then return A;
else
ke—n/2
fori =1tokdo
L if A; <Ajirthen A; & Ak

return FInDMax(A4, k)

(a) [15] Prove formally that the algorithm returns the maximum value in the sequence A; . .

ANSWER:

We proceed as usual by structural induction. For the base case n = 1 FiINDMax correctly

returns the sole (and thus maximum) element A;.

The invariant at the end of each iteration of the for loop is that all A;_; are larger that
all Ax_i+x. This is clearly the case after the first iteration: if the sole value in A;_; is
smaller than the sole value in Ax_;.+, then the if condition is true and so the two values
are exchanged so that A;_; becomes larger. Assuming that all A;_;_; are less that all
Ag..i-1+k at the beginning of an iteration then again if A; is smaller than A;, then these
two values are swapped and thus the whole sequence A, ; becomes larger than A «.
Thus at the end of the loop all the values in A;_ are larger than the values in the rest
of A and so the overall maximum is somewhere in there. This maximum is correctly

returned by the recursive call to FiInboMax by inductive hypothesis.

Page 3 of 7

(b) [4] Write down the recurrence relation for the running time of FiNnbMax. Explain how
you counted the steps.

ANSWER:

Clearly T(1) = 0 (we just return). For T(n) we have the for loop which iterates k = n/2

times followed by the recursive call for k = n/2. Thatis, T(n) = T(n/2) + n/2.

(c) [4] Use the characteristic equation technique to solve the recurrence relation you found
for Question 3b enough to give the running time of the algorithm in © notation.

ANSWER:

T(n) =T(n/2)+n/2. Letn = 2 (so that k = log n) and by = T(2F). The relation becomes
by — bx—1 = 25/2. The characteristic equation for the homogeneous partis r — 1 = 0
and so 71 = 1. For the non-homogeneous part we have b = 2 and d = 0 which leads to
(r —2)! = 0 so that ro = 2. Therefore by = co1¥ + ¢12% = ©(2). This in turn implies that

T(n) = ©(2198") = O(n).

(d) [2] Is the algorithm FinpMax optimal? Explain one way or another.

ANSWER:

The algorithm is optimal, since in order to find the maximum of n values we need to

check all the values at least once and so the lower bound for the problem is Q(n).

Page 4 of 7

4. [7] Give an algorithm that determines whether an undirected graph G = (V, E) contains a
cycle. Your algorithm must run in O(|V|) time (independent on | E|). Explain the idea behind
your algorithm and the running time, but you do not need to provide any formal proof.

ANSWER:

The graph has a cycle iff in a traversal we encounter a vertex a second time. Since G is

undirected the two paths that allow us to reach a vertex twice constitute a cycle.

The usual depth-first search runs in O(|V| + |E|) time, but we can just count the vertices
encountered and always stop at |V| + 1 returning True. If we have to stop earlier then we

return False. We have:

vcount «— 0
algorithm FinoCycLe(G = (V, E)):
LetveV
if v exists then RECFINDCYCLE(?)
else return FaLse
Igorithm rRecFINDCyYcCLE(v):
vcount «— vcount + 1
if vcount = |V| + 1 then return TruUE
foreach (v, u) € E do recFiINDCycLE(u)
L return Faise

o

5. [9] Recall the median-of-medians Quickselect algorithm presented in class:

algorithm MoMSeLecr(k, S, [, h):
if h — [< 25 then use brute force

else
me— (h-1)/5
@ fori =1tom do M; < MeDIANOFFIVE(S) 5i_4. 14+5i)
(b) mom «— MoMSeLect(m /2, M, 1, m)

51 < Snom

p < PartiTion(S, I, h)

if k = p then return S

else if k < p then MoMSeLect(k, S, [, p — 1)
else MoMSkeLecr(k, S, p + 1, h)

Refine the lines (a) and (b) of the algorithm so that the sequence M or medians does not
require additional storage space. Explain how your modifications maintain the correctness
and running time of the algorithm.

Page 5 of 7

ANSWER:

The requested change is super easy to figure out once we notice that the particular location
of values in the sequence never matters in the Quicksort family of algorithms. Indeed, we

move values around all the time when we partition.

This observation suggests that we can reuse the first m indices in S to store M. We only need
to make sure that the existing values therein are moved elsewhere before being overwritten,
so we perform an exchange instead of mere assignment when we assign to M; (now S;).
We assume a slightly modified MEpiaNOFrF1IvE that returns the index of the median rather
than the value (trivial to do and we do not care anyway since MepiaNOFFIVE operates on a
constant number of values so we can spend as much time as we want and the running time

will still be constant). With this modification the requested refinement goes like this:

(@ fori=1tom do
L k < MEDIANOFFIVE(S) 5i_4.. 145i)
Sl‘ d Sk

(b) mom < MoMSEeLect(m/2,S,1,m)

Note that by the time we assign to S; we are long past the need to consider it in MEDIANOFFIVE,
for indeed i goes up one by one in the for loop while the range of MEDIANOFFIVE goes up five

by five in that loop.

Page 6 of 7

6. [20] A majority element is an element that occurs in more than half the elements of a sequence.
For example, the element 3 is the majority element in (3,2, 3,3, 7,8, 3,3), but the sequence
(3,2,3,3,7,8,3,2) has no majority element.

Design a divide and conquer algorithm that receives a sequence of integers S; ., and returns
the majority element of the sequence or NorFounp if there is no majority element. Determine
the running time of your algorithm. You must also explain the idea behind the algorithm
well enough to convince me that it is correct, but you do not need to provide a formal proof.

Hint: If n is a majority element of S then n must also be a majority element of either the first
half of S or the second half of S (or both).

ANSWER:

We recursively find the majority elements in the first and second halves of S. By the hint
above we just reduced the field to two candidates. We then simply count the number of
occurrences of the two candidates in S and return whichever happens to be the overall
majority. If no majority is thus established we return NorFounp. Note that we do not care

about further counting the occurrences of NorFounp since that count will always be 0.

algorithm Majoriry(S, [, h):

if [= h then return S; T(1)=0
else
m«— (h-1)/2 O(1) time
m; «— Majoriry(S, [, m) T(n/2) time
m, «— Majority(S, m + 1, h) T(n/2) time
if m; = m, then return m;
if Count(S,1, h,m;) > (h —1+1)/2 then return m; O(n) time
if Count(S,1, h,m,) > (h — 1 +1)/2 then return m, O(n) time
return NotFounp

Igorithm Count(S, [, h, v):
c«—20
fori =1tohdo
LifSi:cthen c—c+1
L return c
Let input size be n = h — [. Counting clearly takes linear time, and so T(n) = 2T(n/2) + n,

o

with T(0) = 0 (also see the time annotations above). We have already seen this recurrence (it

is the same as MErGESORT) and so we already know that T'(n) = ©(n log n).

Page 7 of 7

