
Name

Student Number

HAND IN
answers recorded
on question paper

BISHOP’S UNIVERSITY

Department of Computer Science
CS 317

FIRST EXAMINATION
29 October 2025

Instructor: Stefan D. Bruda

Instructions
• This examination is 80 minutes in length and is open book. You are allowed to use any kind of printed

documentation. Electronic devices are not permitted. You are not allowed to share material with your
colleagues. Any violation of these rules will result in the complete forfeiture of the examination.

• There is no accident that the total number of marks add up to the length of the test in minutes. The
number of marks awarded for each question should give you an estimate on how much time you are
supposed to spend answering the question.

• To obtain full marks provide all the pertinent details. This being said, do not give unnecessarily long
answers. In principle, all your answers should fit in the space provided for this purpose. If you need
more space, use the back of the pages or attach extra sheets of paper. However, if your answer is not
(completely) contained in the respective space, clearly mention within this space where I can find it.

• The number of marks for each question appears in square brackets right after the question number.
If a question has sub-questions, then the number of marks for each sub-question is also provided.

When you are instructed to do so, turn the page to begin the test.

1 a,b,c 10 / 9
2 10 / 10
3 a,b,c,d 25 / 25
4 5 / 7
5 10 / 9
6 20 / 20

Total: 80 / 80 = 40 / 40

The highest grade was 41 (103%), the lowest
grade was 7 (18%), and the average grade was
20 (50%). Here is the grade distribution:

0–4 (0)
5–8 (1)

9–12 (4)
13–16 (5)
17–20 (3)
21–24 (5)
25–28 (2)
29–32 (1)
33–36 (1)
37–40 (2)

1. [9] For each relation below find all the X ∈ {𝑂,Ω,Θ, 𝑜, 𝜔} that make the relation true. Justify
your answer using limits.

(a) [3] 2𝑛+2 ∈ X(8𝑛)

Answer:

lim𝑛→∞ 2𝑛+2
8𝑛 = lim𝑛→∞ 1

23𝑛−𝑛−2 = lim𝑛→∞ 1
22𝑛−2 = 0, so 2𝑛+2 ∈ 𝑜(8𝑛), and therefore

X ∈ {𝑜, 𝑂}.

(b) [3] log 𝑛 ∈ X(log 𝑛2)

Answer:

lim𝑛→∞
log 𝑛
log 𝑛2 = lim𝑛→∞

log 𝑛
log 𝑛×𝑛 = lim𝑛→∞

log 𝑛
log 𝑛+log 𝑛 = 1/2 = 𝑐, so log 𝑛 ∈ Θ(log 𝑛2)which

means that X ∈ {Θ, 𝑂,Ω}.

(c) [3]
√
𝑛 ∈ X(log 𝑛)

Answer:

We apply l’Hôspital’s and so lim𝑛→∞
√
𝑛

log 𝑛 = lim𝑛→∞
1/2𝑛1/2

1/𝑛 ln 𝑎
= lim𝑛→∞ 𝑛 ln 𝑎

2𝑛1/2 =

lim𝑛→∞ 𝑛1/2 ln 𝑎
2 = ∞, so

√
𝑛 ∈ 𝜔(log 𝑛), and so X ∈ {𝜔,Ω}.

Page 1 of 7

2. [10] What is the complexity of the following algorithm. Explain formally how you counted
the steps and then give the complexity in Θ notation.
𝑖 ← 1; 𝑗 ← 1
for 𝑖 = 1 to 𝑛 do

while 𝑗 < 𝑛 do
𝐴𝑖 ← 𝐴𝑗 + 1
𝑗 ← 𝑗 × 3

while 𝑗 > 1 do
𝐴 𝑗 ← 𝐴𝑖 − 1
𝑗 ← 𝑗/2

for 𝑗 = 1 to 𝑛 do Print(𝐴𝑖)

Answer:

For the first while loop 𝑗 starts at 1 and triples at every iteration. Therefore at iteration 𝑘 we

will have 𝑗 = 3𝑘 . The loop terminates as soon as 𝑗 = 3𝑘 = 𝑛 that is, 𝑘 = log3 𝑛 = Θ(log 𝑛). It

follows that the loop executes Θ(log 𝑛) times.

For the second while loop, 𝑗 starts where the first loop left it that is, 𝑗 = 𝑛. 𝑗 is then halved at

each iteration, meaning that at iteration 𝑘 we have 𝑗 = 𝑛/2𝑘 . The loop terminates as soon as

𝑗 = 𝑛/2𝑘 = 1 that is, 𝑛 = 2𝑘 or 𝑘 = log2 𝑛. Therefore this loop executes Θ(log 𝑛) times.

The two while loops execute 𝑛 times in the first for loop, followed by a Θ(1)-time code

executed 𝑛 times in the second for loop. Therefore 𝑇(𝑛) = 𝑛(Θ(log 𝑛) + Θ(log 𝑛)) + 𝑛Θ(1) =

Θ(𝑛 log 𝑛 + 𝑛) = Θ(𝑛 log 𝑛).

Page 2 of 7

3. [25] Consider the following algorithm:
algorithm FindMax(𝐴, 𝑛):

if 𝑛 = 1 then return 𝐴1

else
𝑘 ← 𝑛/2
for 𝑖 = 1 to 𝑘 do

if 𝐴𝑖 < 𝐴𝑖+𝑘 then 𝐴𝑖 ↔ 𝐴𝑖+𝑘
return FindMax(𝐴, 𝑘)

(a) [15] Prove formally that the algorithm returns the maximum value in the sequence 𝐴1...𝑛 .

Answer:

We proceed as usual by structural induction. For the base case 𝑛 = 1 FindMax correctly

returns the sole (and thus maximum) element 𝐴1.

The invariant at the end of each iteration of the for loop is that all 𝐴1...𝑖 are larger that

all 𝐴𝑘...𝑖+𝑘 . This is clearly the case after the first iteration: if the sole value in 𝐴1...𝑖 is

smaller than the sole value in 𝐴𝑘...𝑖+𝑘 then the if condition is true and so the two values

are exchanged so that 𝐴1...𝑖 becomes larger. Assuming that all 𝐴1...𝑖−1 are less that all

𝐴𝑘...𝑖−1+𝑘 at the beginning of an iteration then again if 𝐴𝑖 is smaller than 𝐴𝑖+𝑘 then these

two values are swapped and thus the whole sequence 𝐴1...𝑖 becomes larger than 𝐴𝑘...𝑖+𝑘 .

Thus at the end of the loop all the values in 𝐴1...𝑘 are larger than the values in the rest

of 𝐴 and so the overall maximum is somewhere in there. This maximum is correctly

returned by the recursive call to FindMax by inductive hypothesis.

Page 3 of 7

(b) [4] Write down the recurrence relation for the running time of FindMax. Explain how
you counted the steps.

Answer:

Clearly 𝑇(1) = 0 (we just return). For 𝑇(𝑛) we have the for loop which iterates 𝑘 = 𝑛/2

times followed by the recursive call for 𝑘 = 𝑛/2. That is, 𝑇(𝑛) = 𝑇(𝑛/2) + 𝑛/2.

(c) [4] Use the characteristic equation technique to solve the recurrence relation you found
for Question 3b enough to give the running time of the algorithm in Θ notation.

Answer:

𝑇(𝑛) = 𝑇(𝑛/2)+𝑛/2. Let 𝑛 = 2𝑘 (so that 𝑘 = log 𝑛) and 𝑏𝑘 = 𝑇(2𝑘). The relation becomes

𝑏𝑘 − 𝑏𝑘−1 = 2𝑘/2. The characteristic equation for the homogeneous part is 𝑟 − 1 = 0

and so 𝑟1 = 1. For the non-homogeneous part we have 𝑏 = 2 and 𝑑 = 0 which leads to

(𝑟 − 2)1 = 0 so that 𝑟2 = 2. Therefore 𝑏𝑘 = 𝑐01
𝑘 + 𝑐12

𝑘 = Θ(2𝑘). This in turn implies that

𝑇(𝑛) = Θ(2log 𝑛) = Θ(𝑛).

(d) [2] Is the algorithm FindMax optimal? Explain one way or another.

Answer:

The algorithm is optimal, since in order to find the maximum of 𝑛 values we need to

check all the values at least once and so the lower bound for the problem is Ω(𝑛).

Page 4 of 7

4. [7] Give an algorithm that determines whether an undirected graph 𝐺 = (𝑉, 𝐸) contains a
cycle. Your algorithm must run in 𝑂(|𝑉|) time (independent on |𝐸|). Explain the idea behind
your algorithm and the running time, but you do not need to provide any formal proof.

Answer:

The graph has a cycle iff in a traversal we encounter a vertex a second time. Since 𝐺 is

undirected the two paths that allow us to reach a vertex twice constitute a cycle.

The usual depth-first search runs in 𝑂(|𝑉| + |𝐸|) time, but we can just count the vertices

encountered and always stop at |𝑉| + 1 returning True. If we have to stop earlier then we

return False. We have:

vcount← 0
algorithm FindCycle(𝐺 = (𝑉, 𝐸)):

Let 𝑣 ∈ 𝑉
if 𝑣 exists then recFindCycle(𝑣)
else return False

algorithm recFindCycle(𝑣):
vcount← vcount + 1
if vcount = |𝑉| + 1 then return True
foreach (𝑣, 𝑢) ∈ 𝐸 do recFindCycle(𝑢)
return False

5. [9] Recall the median-of-medians Quickselect algorithm presented in class:
algorithm MoMSelect(𝑘, 𝑆, 𝑙, ℎ):

if ℎ − 𝑙 ≤ 25 then use brute force
else

𝑚 ← (ℎ − 𝑙)/5
(a) for 𝑖 = 1 to 𝑚 do 𝑀𝑖 ←MedianOfFive(𝑆𝑙+5𝑖−4...𝑙+5𝑖)
(b) mom←MoMSelect(𝑚/2, 𝑀, 1, 𝑚)

𝑆1 ↔ 𝑆mom
𝑝 ← Partition(𝑆, 𝑙, ℎ)
if 𝑘 = 𝑝 then return 𝑆𝑘

else if 𝑘 < 𝑝 then MoMSelect(𝑘, 𝑆, 𝑙, 𝑝 − 1)
else MoMSelect(𝑘, 𝑆, 𝑝 + 1, ℎ)

Refine the lines (a) and (b) of the algorithm so that the sequence 𝑀 or medians does not
require additional storage space. Explain how your modifications maintain the correctness
and running time of the algorithm.

Page 5 of 7

Answer:

The requested change is super easy to figure out once we notice that the particular location

of values in the sequence never matters in the Quicksort family of algorithms. Indeed, we

move values around all the time when we partition.

This observation suggests that we can reuse the first 𝑚 indices in 𝑆 to store 𝑀. We only need

to make sure that the existing values therein are moved elsewhere before being overwritten,

so we perform an exchange instead of mere assignment when we assign to 𝑀𝑖 (now 𝑆𝑖).

We assume a slightly modified MedianOfFive that returns the index of the median rather

than the value (trivial to do and we do not care anyway since MedianOfFive operates on a

constant number of values so we can spend as much time as we want and the running time

will still be constant). With this modification the requested refinement goes like this:

(a) for 𝑖 = 1 to 𝑚 do
𝑘 ←MedianOfFive(𝑆𝑙+5𝑖−4...𝑙+5𝑖)
𝑆𝑖 ↔ 𝑆𝑘

(b) mom←MoMSelect(𝑚/2, 𝑆, 1, 𝑚)

Note that by the time we assign to 𝑆𝑖 we are long past the need to consider it in MedianOfFive,

for indeed 𝑖 goes up one by one in the for loop while the range of MedianOfFive goes up five

by five in that loop.

Page 6 of 7

6. [20] A majority element is an element that occurs in more than half the elements of a sequence.
For example, the element 3 is the majority element in ⟨3, 2, 3, 3, 7, 8, 3, 3⟩, but the sequence
⟨3, 2, 3, 3, 7, 8, 3, 2⟩ has no majority element.
Design a divide and conquer algorithm that receives a sequence of integers 𝑆1...𝑛 and returns
the majority element of the sequence or NotFound if there is no majority element. Determine
the running time of your algorithm. You must also explain the idea behind the algorithm
well enough to convince me that it is correct, but you do not need to provide a formal proof.
Hint: If 𝑛 is a majority element of 𝑆 then 𝑛 must also be a majority element of either the first
half of 𝑆 or the second half of 𝑆 (or both).

Answer:

We recursively find the majority elements in the first and second halves of 𝑆. By the hint

above we just reduced the field to two candidates. We then simply count the number of

occurrences of the two candidates in 𝑆 and return whichever happens to be the overall

majority. If no majority is thus established we return NotFound. Note that we do not care

about further counting the occurrences of NotFound since that count will always be 0.
algorithm Majority(𝑆, 𝑙, ℎ):

if 𝑙 = ℎ then return 𝑆𝑙 𝑇(1) = 0
else

𝑚 ← (ℎ − 𝑙)/2 Θ(1) time
𝑚𝑙 ←Majority(𝑆, 𝑙, 𝑚) 𝑇(𝑛/2) time
𝑚𝑟 ←Majority(𝑆, 𝑚 + 1, ℎ) 𝑇(𝑛/2) time
if 𝑚𝑙 = 𝑚𝑟 then return 𝑚𝑙

if Count(𝑆, 𝑙, ℎ, 𝑚𝑙) > (ℎ − 𝑙 + 1)/2 then return 𝑚𝑙 Θ(𝑛) time
if Count(𝑆, 𝑙, ℎ, 𝑚𝑟) > (ℎ − 𝑙 + 1)/2 then return 𝑚𝑟 Θ(𝑛) time
return NotFound

algorithm Count(𝑆, 𝑙, ℎ, 𝑣):
𝑐 ← 0
for 𝑖 = 𝑙 to ℎ do

if 𝑆𝑖 = 𝑐 then 𝑐 ← 𝑐 + 1
return 𝑐

Let input size be 𝑛 = ℎ − 𝑙. Counting clearly takes linear time, and so 𝑇(𝑛) = 2𝑇(𝑛/2) + 𝑛,

with 𝑇(0) = 0 (also see the time annotations above). We have already seen this recurrence (it

is the same as MergeSort) and so we already know that 𝑇(𝑛) = Θ(𝑛 log 𝑛).

Page 7 of 7

