
FIRST-ORDER OBJECTS

• Ideally, all the data types in a programming language should be first-order objects.

– I.e., all the data types should be manipulated in the “usual ways.”
– They should be comparable using the normal operators, passed by value (unless

explicitly stated otherwise) to functions, etc. etc.

• C++ has gone a step further than Java in this respect.

– Indeed, even the “primitive” types can be considered classes; there is only one
class of objects in the C++ discourse.

• But then take (yeas, please take) arrays (and thus strings).

– They cannot be manipulated in the usual way.
– Indeed, they are in fact pointers to the actual content, so they cannot be mean-

ingfully compared using usual operators, are always passed by reference to
functions, etc.

– Tired of that strcmp yet?

CS 318, FALL 2012 VECTORS AND STRINGS/1

VECTORS

• A vector is a relocating, expandable, polymorphic array.
– They are polymorphic in the usual sense, not Java or Lisp sense.
– I.e., you can declare vectors that hold any data type, but a given vector instance

can hold data of a single type.

• Quick random access but slow copying and expansion.

• Before you begin:
#include <vector>

• Declaring a vector:

vector<int> a(3); // a vector holding ints, of (initial) size 3
vector<char> b; // a vector holding chars, of default initial size 0

• Accessing values in a vector:

a[1] = a[1] + 5;

– operator[] does not check for array bounds.

CS 318, FALL 2012 VECTORS AND STRINGS/2

VECTORS (CONT’D)

• Other goodies:

– You can obtain the size of a vector by using the member function size().
– You can resize a vector using the member function resize(int).

∗ Expensive operation (if size increases)!

– You cannot initialize a vector using a literal array or for that matter any array.

∗ You have to use a loop to initialize the values in a vector, or be happy with the
default.

void get_ints (vector<int> array) {

int read_so_far = 0, input;

while (cin >> input) {

if (read_so_far == array.size())

array.resize(array.size() * 2 + 1);

array[read_so_far++] = input;

}

array.resize(read_so_far);

}

CS 318, FALL 2012 VECTORS AND STRINGS/3

VECTORS (CONT’D)

• Other goodies:

– You can obtain the size of a vector by using the member function size().
– You can resize a vector using the member function resize(int).

∗ Expensive operation (if size increases)!

– You cannot initialize a vector using a literal array or for that matter any array.

∗ You have to use a loop to initialize the values in a vector, or be happy with the
default.

void get_ints (vector<int>& array) {

int read_so_far = 0, input;

while (cin >> input) {

if (read_so_far == array.size())

array.resize(array.size() * 2 + 1);

array[read_so_far++] = input;

}

array.resize(read_so_far);

}

CS 318, FALL 2012 VECTORS AND STRINGS/3

SIZE, CAPACITY, PUSHING

• There are two “sizes”: how many elements are stored in the vector (size()) and
how many elements can be held (capacity()).

– But don’t get excited, when you declare vector<int> a(3) the size is set to
3, even if you did not put anything in there explicitly.

– In most of the cases, you should forget the existennce of capacity().

• Another version of get_ints:

void get_ints (vector<int>& array) {
array.resize(0);
while (cin >> input) {

array.push_back(input);
}

}

– The member function push_back increases the size by 1, and adds the argu-
ment as the last element in the vector.

∗ Capacity is also increased if needed.

CS 318, FALL 2012 VECTORS AND STRINGS/4

STRINGS AS FIRST-ORDER OBJECTS

• Before you begin: #include <string>

• Declaring strings:

string s; // an (initially empty) string
string s1("hello"); // a string initialized by means of a string literal

Operation on string s Result
s.length() returns the length of s
s[2] accesses the third character in s
s = "hi"; assignment operator
s == "hi" true!; special functions no longer needed
s >= "hello" true!
s = s + " there" s becomes "hi there"
s += " there" same as above
s.c_str() returns a pointer to the C string held by s

(const char*, null-terminated)

CS 318, FALL 2012 VECTORS AND STRINGS/5

