
FUN WITH CLASSES

• Just as in Java! In particular,

– A class holds member variables and member functions (hereinafter called “mem-
bers” when referred to as a whole).

– A class member can be in the private, protected, or public section.

– There are a number of constructors (same name as the class, no return type).

∗ If no constructor is defined, then an implicit one is inserted by default. The
default constructor initializes the variable members with default values.

∗ But if one (or more) constructors are provided, then the default constructor is
no longer available.

• Things that are different from Java: we also have a destructor.

– Its name is the name of the class, prefixed by ˜ .
– It is called by the system once the extent of an object lapses, and its job is to

clean up after the object.
– A default destructor (which does nothing) is provided.

CS 318, FALL 2012 OBJECTS AND CLASSES/1

EXAMPLE: LISTS, A FIRST IMPLEMMENTATION

• Class declaration (e.g., in list.h)

#ifndef __LIST_H class list {
#define __LIST_H cons_cell * content;

#include <iostream> public:
using namespace std;

list(void);
struct cons_cell { list(cons_cell *);

int car; list(int, cons_cell * = 0);
cons_cell * cdr; ˜list(void);
cons_cell(int , cons_cell * = 0);

}; int null(void) const;
int car(void) const;
void cdr(void);
void cons(int);
void rmth(int = 0);
void print(void) const;

};

#endif / * __LIST_H * /

CS 318, FALL 2012 OBJECTS AND CLASSES/2

MUTATORS AND ACCESSORS

• A member function that changes the state of an object (e.g., the variables therein) is
a mutator.

• By contrast, a member functions which does not change the state of the object (e.g.,
it just returns the value of some variable) is an accessor.

• In C++, we can mark each function as accessor or mutator:

– By default, member functions are mutators.

– To make a function accessor, we add const after the closing parenthesis that
ends the parameter list.

– This is not just a comment; it has semantic implications.

∗ Indeed, mutators cannot be applied to constant objects, and a good C++
compiler does enforce this.

CS 318, FALL 2012 OBJECTS AND CLASSES/3

LISTS, THE IMPLEMENTATION

#include "list.h"
cons_cell::cons_cell (int val, cons_cell * rest) {

car = val;
cdr = rest;

}
list::list (void) {

content = 0;
}
list::list (cons_cell * c) {

content = c;
}
list::list (int val, cons_cell * rest) {

content = new cons_cell(val,rest);
}

• When implementing member functions, you have to say which class the member
function pertains to.

– You do this by using the scope operator :: .
– when you write class-name::member you refer to the entity member of class

class-name.
– Do not confuse :: (refers to a class) with . (refers to an object).

CS 318, FALL 2012 OBJECTS AND CLASSES/4

LISTS, THE IMPLEMENTATION (CONT’D)

• Alternatively, you can define a constructor by using an initializer list:

list::list (cons_cell * c)
: content (c) {

}

• The main role of the destructor is to deallocate memory that was allocated dynami-
cally.

– You also do here whatever you need to do when your object is destroyed.

list::˜list (void) { void list::cdr (void) {
while (content != 0) if (content != 0) {

cdr(); cons_cell * tmp = content;
} content = content -> cdr;

delete tmp;
}

}

CS 318, FALL 2012 OBJECTS AND CLASSES/5

LISTS, THE IMPLEMENTATION (CONT’D)

int list::null (void) const { void list::rmth (int which) {
return content == 0; cons_cell * place = content;

} // go to element which - 1...
for (int i = 0; i < which - 1; i++) {

int list::car (void) const { if (place == 0)
return content -> car; return; // nothing to delete,

} // we are done.
place = place -> cdr;

void list::cons(int c) { }
content = new cons_cell(c,content); if (place !=0 && place - > cdr != 0) {

} cons_cell * to_delete = place -> cdr;
place -> cdr = place -> cdr -> cdr;

void list::print(void) const { delete to_delete;
cons_cell * iter = content; }
cout << "("; }
while (iter != 0) {

cout << iter -> car;
iter = iter -> cdr;
if (iter != 0) cout << ",";

}
cout << ")";

}

CS 318, FALL 2012 OBJECTS AND CLASSES/6

OBJECTS (AKA USING CLASSES)

• Not as in Java! Do not use new when creating a normal object (i.e., as a local or
global variable):

Correct Wrong
list example1;
cons_cell * c = 0;
list example2(c);
list example3(1);
list example4(1,0);
// what do they mean?
list example5 = 0;
list example6 = c;

list example1 = new list;
// correct in Java, wrong in C++!!

list example2();
// why?

• However, do use new when you allocate memory for your object dynamically (i.e.,
when you initialize a pointer):

list * pointer_example = new list;

CS 318, FALL 2012 OBJECTS AND CLASSES/7

OBJECTS, OBJECTS EVERYWHERE

• In Java, you have primitive data types (such as int , float , etc.) and classes.

• In C++, any data type is a class, including int , float , etc.

– In other words, either of the two declarations below is correct.

int counter(52); int counter = 52;

• Remember the initializer list?

list::list (cons_cell * c)
: content (c) { }

– Compare with the default constructor, which is:
list::list () { }

∗ The object content (a pointer!) is then initialized using its default construc-
tor, which for a pointer just initializes it with 0.

– If we do not like the default constructor, we can ask for another one in the initial-
izer list.

∗ In this particular case, we ask for the unary constructor of a pointer, which
initializes the pointer with the argument.

CS 318, FALL 2012 OBJECTS AND CLASSES/8

THE BIG THREE

• Besides the default void constructor, three more member functions are defined for
you by default: a copy constructor, an = operator, and a destructor.

• Copy constructor. Fires up when you write

int i = 0;
int j = i; // remember, this is equivalent to int j(i);

– For this to work, there has to be a constructor int::int(int) .

∗ Well, such a constructor exists. For various purposes (which?) though, it is
int::int(const int&) and is called the copy constructor.

∗ In general, a default copy constructor c::c(const c&) is automatically cre-
ated for any class c in the system. It just copies all the member variables
using the respective copy constructors.

• The = operator. The default such an operator does exactly what the copy construc-
tor does.

list l2 = l1; // copy constructor
list l2(l1); // copy constructor too
l2 = l1; // the operator =, NOT the copy constructor

CS 318, FALL 2012 OBJECTS AND CLASSES/9

WHEN DEFAULTS DO NOT WORK

cout << "lst = ";
lst.print(); cout << "\n";

cout << "We do list clone(lst);\n";
cout << " lst.cdr(); lst.cdr();\n";
list clone(lst);
lst.cdr(); lst.cdr();
cout << "lst = ";
lst.print(); cout << "\n";
cout << "clone = ";
clone.print(); cout << "\n";

cout << "We do clone1 = lst;\n";
cout << " lst.cdr(); lst.cdr();\n";
list clone1;
clone1 = lst;
lst.cdr(); lst.cdr();
cout << "lst = ";
lst.print(); cout << "\n";
cout << "clone1 = ";
clone1.print(); cout << "\n";

What we want:
lst = (7,5,4,3,2,1)
We do list clone(lst);

lst.cdr(); lst.cdr();
lst = (4,3,2,1)
clone = (7,5,4,3,2,1)
We do clone1 = lst;

lst.cdr(); lst.cdr();
lst = (2,1)
clone1 = (4,3,2,1)

What we actually get:
lst = (7,5,4,3,2,1)
We do list clone(lst);

lst.cdr(); lst.cdr();
lst = (4,3,2,1)
clone = (7,5,4,3,2,1)
We do clone1 = lst;

lst.cdr(); lst.cdr();
lst = (2,1)
clone1 = (4,3,2,1)
Segmentation fault

CS 318, FALL 2012 OBJECTS AND CLASSES/10

WHEN DEFAULTS DO NOT WORK (CONT’D)

• Out class (list) contains a pointer. The default copy constructor and = operator
just copies the pointer.

– In effect, the defaults do shallow copying; we want deep copying.

– Solution: roll your own member functions.

class list {
...
cons_cell * clone_cons (cons_cell *) const;

public:
list(const list&);
const list& operator=(const list&);
...

}

∗ Note that the = operator returns list& (why?).

– When you write: clone1 = lst;
you actually mean: clone1.operator=(lst);

CS 318, FALL 2012 OBJECTS AND CLASSES/11

IMPLEMENTATION OF COPY CONSTRUCTOR AND = OPERATOR

/ *
* Does the deep copying of content. We cannot easily do it with a

* cycle, since a naive such a cycle will copy the list in the wron g

* order. So we write a recursive function.

* /
cons_cell * list::clone_cons (cons_cell * c) const {

if (c == 0) return 0;
return (new cons_cell(c -> car, clone_cons(c -> cdr)));

}

list::list(const list& l) {
content = clone_cons(l.content);

}

const list& list::operator=(const list& rhs) {
if (this != &rhs)

content = clone_cons(rhs.content);
return * this; // because we may need to do a = b = c;

}

CS 318, FALL 2012 OBJECTS AND CLASSES/12

IMPLEMENTATION OF COPY CONSTRUCTOR AND = OPERATOR

/ *
* Does the deep copying of content. We cannot easily do it with a

* cycle, since a naive such a cycle will copy the list in the wron g

* order. So we write a recursive function.

* /
cons_cell * list::clone_cons (cons_cell * c) const {

if (c == 0) return 0;
return (new cons_cell(c -> car, clone_cons(c -> cdr)));

}

list::list(const list& l) {
content = clone_cons(l.content);

}

const list& list::operator=(const list& rhs) {
if (this != &rhs) // Standard alias test (when we do a = a;)

content = clone_cons(rhs.content);
return * this; // because we may need to do a = b = c;

}

CS 318, FALL 2012 OBJECTS AND CLASSES/12

THE DESTRUCTOR

• The destructor of an object is called immediately before that object ceases to exist.
In particular,

– The destructor of a local variable is called immediately before the block that
defines it returns.

– The destructor of a global variable or of a local static variable is called at the very
end of the program.

– The destructor of a variable member of class c is automatically called by the
destructor of c.

CS 318, FALL 2012 OBJECTS AND CLASSES/13

THE DESTRUCTOR (CONT’D)
int main () { Birth: "lst": 0x7ffff7e8

int elm = -1; 1
cout<<"Birth: \"lst\": "; 2
list lst; 3
while (elm != 0) { 4

cin >> elm; if (elm != 0) lst.cons(elm); } 0
lst.rmth(1); lst.rmth(10); lst = (4,2,1)
cout<<"lst = "; lst.print(); cout<<"\n"; Birth: "plist", d yn.:
cout<<"Birth: \"plist\", dyn.: "; 0x10011be0
list * plist = new list; We do list clone(lst);
cout<<"We do list clone(lst);\n"; lst.cdr(); lst.cdr();
cout<<" lst.cdr(); lst.cdr();\n"; Birth: "clone": 0x7fff f808
cout<<"Birth: \"clone\": "; lst = (1)
list clone(lst); lst.cdr(); lst.cdr(); clone = (4,2,1)
cout<<"lst = "; lst.print(); cout<<"\n"; We now call delete plist
cout<<"clone = "; clone.print(); cout<<"\n"; ### Death: 0x 10011be0
cout<<"We do delete plist\n"; delete(plist); We do clone1 = lst;
cout<<"We do clone1 = lst;\n"; lst.cdr(); lst.cdr();
cout<<" lst.cdr(); lst.cdr();\n"; Birth: "clone1": 0x7ff ff818
cout<<"Birth: \"clone1\": "; lst = ()
list clone1; clone1 = lst; lst.cdr(); lst.cdr(); clone1 = (1)
cout<<"lst = "; lst.print(); cout<<"\n"; ### Death: 0x7fff f818
cout<<"clone1 = "; clone1.print(); cout<<"\n"; ### Death: 0x7ffff808

} ### Death: 0x7ffff7e8

CS 318, FALL 2012 OBJECTS AND CLASSES/14

THE RULE OF THE BIG THREE

• Whenever the defaults work for everything you do not need to define anything.

• . . . however, when the default does not work for one of the big three, then the defaults
won’t wotk for the others

• When it comes to the Big Three,

– You either do not need to define any, or you need to define all!

– All the Big Three must make the same assumption about data (whether it is deep
copied or shallow copied, etc.)

CS 318, FALL 2012 OBJECTS AND CLASSES/15

SIMPLE INHERITANCE

#include "list.h"

class ilist: list { class list {
public: cons_cell * content;

ilist(void); cons_cell * clone_cons (cons_cell *) const;
ilist(const ilist&);
ilist(const list&); public:
int operator[](int) const;

}; list(void);
ilist::ilist(void) list(const list&);

: list () { / * empty * / } list(cons_cell *);
list(int, cons_cell * = 0);

ilist::ilist(const ilist& l) ˜list(void);
: list(l) { / * empty * / } const list& operator=(const list&);

ilist::ilist(const list& l) int null(void) const;
: list(l) { / * empty * / } int car(void) const;

void cdr(void);
int ilist::operator[](int i) const { void cons(int);

cons_cell * place = content; void rmth(int = 0);
for (int i = 0; i < i; i++) void print(void) const;

place = place -> cdr; };
return place -> car;
}

CS 318, FALL 2012 OBJECTS AND CLASSES/16

SIMPLE INHERITANCE, SUMMARY

• Visibility rules: With B an object of the base class, D an object of the derived class,
and M a member of the base class,

Public inheritance situation Public Protected Private
Base class member function accessing M good good good
Derived class member function accessing M good good error
main accessing B.M or D.M good error error
Derived class member function accessing B.M good error error

• The default constructor for a derived class is

Derived() : Base () { }

• The copy constructor and the operator = behave in the same manner:

– they call their correspondent in the base class and then copy whatever remains
using the usual assignment operator.

CS 318, FALL 2012 OBJECTS AND CLASSES/17

SIMPLE INHERITANCE (CONT’D)

#include "list.h" class list {
cons_cell * clone_cons (cons_cell *) const;

class ilist: list {
public: protected:

ilist(const list&); cons_cell * content;
int operator[](int) const;

}; public:
list(void);

ilist::ilist(const list& l) list(const list&);
: list(l) { list(cons_cell *);

/ * empty * / list(int, cons_cell * = 0);
} ˜list(void);

const list& operator=(const list&);
int ilist::operator[](int i) const {

cons_cell * place = content; int null(void) const;
for (int i = 0; i < i; i++) int car(void) const;

place = place -> cdr; void cdr(void);
return place -> car; void cons(int);

} void rmth(int = 0);
void print(void) const;

};

CS 318, FALL 2012 OBJECTS AND CLASSES/18

USING DERIVED CLASSES

cout << "Using copy constructor from list to ilist.\n";
ilist il(lst);
cout << "indexed lists: il[3] = " << il[3] << "\n";
cout << "Using assignment operator from list to ilist.\n";
ilist il1;
il1 = lst;
cout << "indexed lists: il1[3] = " << il1[3] << "\n";

main.cc: In function ‘int main()’:
main.cc:23: no matching function for call to ‘ilist::ilist ()’
ilist.h:8: candidates are: ilist::ilist(const list &)
ilist.h:10: ilist::ilist(const ilist &)
make: *** [main.o] Error 1

CS 318, FALL 2012 OBJECTS AND CLASSES/19

USING DERIVED CLASSES

cout << "Using copy constructor from list to ilist.\n";
ilist il(lst);
cout << "indexed lists: il[3] = " << il[3] << "\n";
cout << "Using assignment operator from list to ilist.\n";
ilist il1;
il1 = lst;
cout << "indexed lists: il1[3] = " << il1[3] << "\n";

main.cc: In function ‘int main()’:
main.cc:23: no matching function for call to ‘ilist::ilist ()’
ilist.h:8: candidates are: ilist::ilist(const list &)
ilist.h:10: ilist::ilist(const ilist &)
make: *** [main.o] Error 1

CS 318, FALL 2012 OBJECTS AND CLASSES/19

INDEXED LISTS AGAIN

#include "list.h"

class ilist: list {
public:

ilist(void);
ilist(const list&);
int operator[](int) const;

};

ilist::ilist(const list& l) ilist::ilist(void)
: list(l) { : list() {

/ * empty * / / * empty * /
} }

int ilist::operator[](int ix) const {
cons_cell * place = content;
for (int i = 0; i < ix; i++)

place = place -> cdr;
return place -> car;

}

CS 318, FALL 2012 OBJECTS AND CLASSES/20

ASSIGNING TO INDICES

• We would also like to do this:

il.print(); // il = (7,5,4,3,2,1)
il[3] = 7;
il.print(); // il = (7,5,4,7,2,1)

• We then change the [] operator so that it returns a reference:

// in class declaration:
int& operator[](int) const;

// in class implementation:
int& ilist::operator[](int ix) const {

cons_cell * place = content;
for (int i = 0; i < ix; i++)

place = place -> cdr;
return place -> car;

}

• . . . and we get:

main.cc:27: fields of ‘const list’ are inaccessible in ‘ili st’ due to
private inheritance

CS 318, FALL 2012 OBJECTS AND CLASSES/21

ASSIGNING TO INDICES

• We would also like to do this:

il.print(); // il = (7,5,4,3,2,1)
il[3] = 7;
il.print(); // il = (7,5,4,7,2,1)

• We then change the [] operator so that it returns a reference:

// in class declaration:
int& operator[](int) const;

// in class implementation:
int& ilist::operator[](int ix) const {

cons_cell * place = content;
for (int i = 0; i < ix; i++)

place = place -> cdr;
return place -> car;

}

• . . . and we get:

main.cc:27: fields of ‘const list’ are inaccessible in ‘ili st’ due to
private inheritance

CS 318, FALL 2012 OBJECTS AND CLASSES/21

ASSIGNING TO INDICES

• We would also like to do this:

il.print(); // il = (7,5,4,3,2,1)
il[3] = 7;
il.print(); // il = (7,5,4,7,2,1)

• We then change the [] operator so that it returns a reference:

// in class declaration:
int& operator[](int) const;

// in class implementation:
int& ilist::operator[](int ix) const {

cons_cell * place = content;
for (int i = 0; i < ix; i++)

place = place -> cdr;
return place -> car;

}

• . . . and we get:

main.cc:27: fields of ‘const list’ are inaccessible in ‘ili st’ due to
private inheritance

CS 318, FALL 2012 OBJECTS AND CLASSES/21

PUBLIC INHERITANCE!!

class ilist: public list {
public:

ilist(void);
ilist(const list&);
int& operator[](int) const;

};

ilist::ilist(void)
: list() {
/ * empty * /

}

ilist::ilist(const list& l)
: list(l) {

/ * empty * /
}

int& ilist::operator[](int which) const {
cons_cell * place = content;
for (int i = 0; i < which; i++)

place = place -> cdr;
return place -> car;

}

CS 318, FALL 2012 OBJECTS AND CLASSES/22

PRIVATE INHERITANCE

stack.h

#ifndef __ISTACK_H
#define __ISTACK_H
#include "list.h"

class stack: private list {
public:

void push(int);
void pop(void);
int top(void) const;
int null(void) const;

};
#endif / * __ISTACK_H * /

mains.cc

#include "stack.h"
int main () {

int elm = -1; stack s;
while (elm != 0) { cin >> elm; if (elm != 0) s.push(elm); }
// s.cdr(); --> ‘void list::cdr()’ is inaccessible within t his context
// s.print(); --> error too!
cout << s.top() << "\n"; }

stack.cc

#include "stack.h"

void stack::push(int i) {
cons(i);

}
int stack::top(void) const {

return car();
}
int stack::null(void) const {

return list::null();
}
void stack::pop(void) {

cdr(); }

CS 318, FALL 2012 OBJECTS AND CLASSES/23

PRIVATE INHERITANCE (CONT’D)

• Visibility rules: With B an object of the base class, D an object of the derived class,
and M a member of the base class,

Private inheritance situation Public Protected Private
Base class member function accessing M good good good
Derived class member function accessing M good error error
main accessing B.M good error error
main accessing D.M error error error
Derived class member function accessing B.M error error error

• In general, you should avoid private inheritance. . .

class d : private b {

... (access b::m) ...
}

largely
equivalent
with:

class d {
b o;
... (access o.m) ...

}

• . . . unless it greatly simplifies the code, or simplifies coding logic, or is justified on
performance grounds.

CS 318, FALL 2012 OBJECTS AND CLASSES/24

AVOIDING PRIVATE INHERITANCE

stack.h

#ifndef __ISTACK_H
#define __ISTACK_H
#include "list.h"

class stack {
list stk;

public:
void push(int);
void pop(void);
int top(void) const;
int null(void) const;

};
#endif / * __ISTACK_H * /

stack.cc

#include "stack.h"

void stack::push(int i) {
stk.cons(i);

}
int stack::top(void) const {

return stk.car();
}
int stack::null(void) const {

return stk.null();
}
void stack::pop(void) {

stk.cdr(); }

CS 318, FALL 2012 OBJECTS AND CLASSES/25

OVERRIDING A MEMBER FUNCTION

class worker {
...

public:
void do_work(void);
...

};

class workaholic: public worker {
...

public:
void do_work(void);
...

};

void workaholic::do_work(void) {
// work like a worker

have_coffee(); // take short break
// work like a worker some more

}

CS 318, FALL 2012 OBJECTS AND CLASSES/26

OVERRIDING A MEMBER FUNCTION

class worker {
...

public:
void do_work(void);
...

};

class workaholic: public worker {
...

public:
void do_work(void);
...

};

void workaholic::do_work(void) {
worker::do_work(); // work like a worker
have_coffee(); // take short break
worker::do_work(); // work like a worker some more

}

CS 318, FALL 2012 OBJECTS AND CLASSES/26

REFINED LISTS

• cons_cell is not used outside the classses list and ilist .

– We would therefore like to disallow access to its members (all of them, including
its constructor!!) for anybody else than the classes list and ilist .

– We could declare it in the protected area of class list.

∗ Nobody will then be able to access its members outside the class we define
it in.

∗ But then nobody will know about its existence either.

• We would also like to be able to print lists just by doing something like this:

list lst;
cout << lst << "\n";

CS 318, FALL 2012 OBJECTS AND CLASSES/27

FRIENDS

• First, we make cons_cell a class instead of a struct (i.e., all of its members are
private by default).

• Given a class C, a friend class of C is allowed to access the private members of C
just as C does.

– So we declare class list to be a friend of our class cons_cell .

– “Friendliness” is not inherited, so we must do the same thing with ilist .

class cons_cell {
int car;
cons_cell * cdr;
cons_cell(int , cons_cell * = 0);

friend class list;
friend class ilist;

};

CS 318, FALL 2012 OBJECTS AND CLASSES/28

I/O FRIENDS

• Operators >> and << normally do shifts.

• However, they are also redefined to do I/O.

– So we could also redefine them to do I/O for our class.

– But we cannot define them as members of class list (why?).

∗ If << were a member function of list it would take an object of type list
and an object of type ostream . We would then write lst << cout .

∗ What we want is the other way around, because we want to write
cout << lst .

∗ So we declare << as

... operator<< (ostream& out, const list& value);

– Conclusion: we make I/O operators functions, and we declare them friends of
our class.

CS 318, FALL 2012 OBJECTS AND CLASSES/29

I/O FRIENDS

• Operators >> and << normally do shifts.

• However, they are also redefined to do I/O.

– So we could also redefine them to do I/O for our class.

– But we cannot define them as members of class list :

∗ If << were a member function of list it would take an object of type list
and an object of type ostream . We would then write lst << cout .

∗ What we want is the other way around, because we want to write
cout << lst .

∗ So we declare << as

... operator<< (ostream& out, const list& value);

– Conclusion: we make I/O operators functions, and we declare them friends of
our class:

CS 318, FALL 2012 OBJECTS AND CLASSES/29

I/O FRIENDS (CONT’D)

In list.h:
class list {

...
friend ostream& operator<< (ostream& out, const list& valu e);

};

In list.cc:
ostream& operator<< (ostream& out, const list& value) {

list iter(value); out << "(";
while (!iter.null()) {

out << iter.car(); iter.cdr();
if (!iter.null()) out << ",";

}
out << ")";
return out;

}

CS 318, FALL 2012 OBJECTS AND CLASSES/30

AVOIDING FRIENDLY FUNCTIONS

• In general, printing can be done using accessors, which are public anyway.

• If you need a friend function, you can always write an equivalent public member
function and then just call that function from within the friend function.

– Then the function does not need to be friend anymore:
In list.h:

class list {
...
/ * no friends necessary * /

};

ostream& operator<< (ostream& out, const list& value);

In list.cc:

ostream& operator<< (ostream& out, const list& value) {
value.print();
return out;

}

CS 318, FALL 2012 OBJECTS AND CLASSES/31

OPERATOR OVERLOADING

• You can overload almost any operator you like.

– However, you cannot create new operators (stick with overloading the existing
ones).

∗ This include changing the arity of some operator.

– The following operators cannot be overloaded: . , :: , ?: , and -> .

• Recommendations for operator overloading:

– Use similar meaning: use overloaded operators to do operations as close as
possible to those they already do.

– Be consistent: if you overload one arithmetic operator, it is a good idea to over-
load all of them.

– Do not abuse: sometimes an operator is easier to understand than a function
(e.g., indexing using []), sometimes it is not (e.g., getting the prefix of a string
using -). When in doubt, use a function.

CS 318, FALL 2012 OBJECTS AND CLASSES/32

STATIC CLASS MEMBERS

• Exactly as in Java, a static class member is a global variable visible only to class
members (if declared private).

– There is one static member per class instead of one per instance.

– You access a static member by using the scope operator (::), not the member
access operator (.).

class list {
static int active_instances;
...

};

int list::active_instances = 0;

list::list (void) { list::˜list (void) {
active_instances++; active_instances--;
content = 0; while (content != 0)

} cdr();
}

CS 318, FALL 2012 OBJECTS AND CLASSES/33

