
FIRST-ORDER OBJECTS

• Ideally, all the data types in a programming language should be first-order objects.

– I.e., all the data types should be manipulated in the “usual ways.”
– They should be comparable using the normal operators, passed by value (unless

explicitly stated otherwise) to functions, etc. etc.

• C++ has gone a step further than Java in this respect.

– Indeed, even the “primitive” types can be considered classes; there is only one
class of objects in the C++ discourse.

• But then take (yes, please take) arrays (and thus strings).

– They cannot be manipulated in the usual way.
– Indeed, they are in fact pointers to the actual content, so they cannot be mean-

ingfully compared using usual operators, are always passed by reference to
functions, etc.

– Tired of that strcmp yet?

CS 318, FALL 2012 FUN WITH TEMPLATES/1

THE C++ STANDARD TEMPLATE LIBRARY (STL)

• Ofers only first-order data types.

– Also offers generic, handy algorithms.

• Includes, between other convenient types, well-behaved replacements for arrays
(vector).

– Polymorphic in the usual sense, not Java or Lisp sense.
– I.e., you can declare vectors that hold any data type, but a given vector instance

can hold data of a single type.
– Quick random access but slow copying and expansion.

• In C++ proper, strings are no longer a subtype of arrays. In particular the class string
is not even in the STL (strings are not polymorphic).

• For a reference of STL types, see for instance

http://www.cppreference.com/cpp_stl.html

CS 318, FALL 2012 FUN WITH TEMPLATES/2

OTHER STL TYPES

• Lists: the opposite of vectors, fast insertions and deletions, slower random access.

– Header: <list>

– Sample declaration: list<int> l;

– Some interesting member functions: push_front, push_back, size, front,
pop_front, reverse, merge (on sorted lists), sort.

• list and vector are sequence containers.

• There are also associative containers, such as sets.

CS 318, FALL 2012 FUN WITH TEMPLATES/3

ITERATORS

• Iterators are objects which move through a collection or container of other objects,
selecting them one at a time.

• Iterators are not pointers, but they are useful for the same jobs.
– A pointer is actually a special case of iterator.

• Operations on an iterator itr:

– itr++ advances the iterator to the next location.
– *itr returns a reference to the object stored at location pointed at by itr.
– itr1==itr2 (itr1!=itr2) return true if itr1 and itr2 refer (do not refer) to

the same location.

• Containers define several iterators. They also define iterator types.
– For instance, there are two iterators defined for the class string: begin() and
end()

– the type string::iterator is also defined. In other words, the type of the
begin() is string::iterator begin(void);

CS 318, FALL 2012 FUN WITH TEMPLATES/4

USING ITERATORS

#include <string> int main () {
#include <string.h> char* cs1 = "hello world";
#include <iostream> char* cs2 = "hello";
using namespace std; string ss1(cs1);

string ss2(cs2);
char* end_str (char* str)
{ char* p = str; cout << my_strcmp(cs1,cs2) << ", "

while (*p != ’\0’) p++; << my_strcmp(ss1,ss2) << "\n";
return p; } }

int my_strcmp(char* s1, char* s2) { int my_strcmp(string& s1, string& s2) {
char* p1 = s1; string::iterator p1 = s1.begin();
char* p2 = s2; string::iterator p2 = s2.begin();
while(p1 != end_str(s1) && while(p1 != s1.end() &&

p2 != end_str(s2)) { p2 != s2.end()) {
cout << "Compare " << *p1 << cout << "Compare " << *p1 <<

" with " << *p2 << "\n"; " with " << *p2 << "\n";
if (*p1 != *p2) if (*p1 != *p2)

return (*p1 < *p2) ? -1 : 1; return (*p1 < *p2) ? -1 : 1;
p1++; p1++;
p2++; p2++;

} }
return strlen(s2) - strlen(s1); return s2.size() - s1.size();

} }

CS 318, FALL 2012 FUN WITH TEMPLATES/5

OTHER ITERATORS

• The iterators presented above are in fact forward iterators.

• Other types of iterators:

– Bidirectional: same as forward iterator, plus

∗ itr-- sets the iterator to the previous location. We can traverse the container
forward as well as backward.

– Random access: same as bidirectional iterator, plus assignment:

∗ itr=itr1 sets the iterator itr to point to the same location as itr1.

∗ Actually, string::iterator is a type for random access iterator. So we
can do:

string::iterator p1; // compare with:
p1 = s1.begin(); // string::iterator p1 = s1.begin();

CS 318, FALL 2012 FUN WITH TEMPLATES/6

ALGORITHMS

• Algorithms do not hold any data (instead, they operate on some provided data).

– So they are not classes, they are functions; or rathrer “recipes for functions.”

∗ Remember, now all our objects are first-class, so we can write functions that
can be applied on a wide collection of data types.

∗ In other words, we can write generic functions.

∗ In other words, we can write things we can really call algorithms (as opposed
to algorithm implementations).

– A first simple algorithm: receives a function f and a value x, and applies f on x.

template<class UnaryFunc, class T>
void call_func(T& x, UnaryFunc f) {
f(x);

}

– You don’t always have to roll your own algorithms. Handy functions are provided
in STL. They are grouped in the header <algorithm>.

CS 318, FALL 2012 FUN WITH TEMPLATES/7

ALGORITHMS (CONT’D)

• So algorithms are functions.

• But then functions (and thus algorithms) are also types, so we must be able to define
functions as classes.

– How?

– By defining the function application operator, i.e., operator()

– Example: binary comparison objects.

template <class T> struct tmax {
bool operator() (const T& a, const T& b) { return (a > b) ? a : b; }

};

int main () {
tmax<int> max; // max is now a function (and also an object)
cout << max(1, 2) << endl;

}

Ugly, much like macro definition for generic functions!

CS 318, FALL 2012 FUN WITH TEMPLATES/8

ALGORITHMS (CONT’D)

• So algorithms are functions.

• But then functions (and thus algorithms) are also types, so we must be able to define
functions as classes.

– How?

– By defining the function application operator, i.e., operator()

– Example: binary comparison objects.

template <class T> struct tmax {
bool operator() (const T& a, const T& b) { return (a > b) ? a : b; }

};

int main () {
tmax<int> max; // max is now a function (and also an object)
cout << max(1, 2) << endl;

}

Ugly, much like macro definition for generic functions!

CS 318, FALL 2012 FUN WITH TEMPLATES/8

BINARY COMPARISON, REVISITED

• We can however move the template inside the class:

struct tmax {
template <class T> T operator()(T a, T b) {

return (a > b) ? a : b;
}

};

int main () {
tmax max;

cout << max(1, 2) << endl; // on int
cout << max(string("alpha"), string("beta")) << endl; // on string
cout << max(1.5, 6.3) << endl; // on float
// cout << max (1.5, 6) << endl; // not going to work

// (why?)
}

CS 318, FALL 2012 FUN WITH TEMPLATES/9

FUNCTION OBJECTS IN STL

• Most operators have equivalent functions in STL

• Header that needs to be included: <functional>

#include <functional> // for greater<> and less<>
#include <algorithm> //for sort()
#include <vector>
using namespace std;

int main()
{

vector <int> vi;
//..fill vector
sort(vi.begin(), vi.end(), greater<int>());//descending
sort(vi.begin(), vi.end(), less<int>()); //ascending

}

CS 318, FALL 2012 FUN WITH TEMPLATES/10

FUNCTION OBJECTS IN STL (CONT’D)

Arithmetic:
plus → addition x + y
minus → subtraction x - y
multiplies → multiplication x * y
divides → division x / y
modulus → remainder x % y
negate → negation - x

Commparison:
equal_to → x == y
not_equal_to → x != y
greater → x > y
less → x < y
greater_equal → x >= y
less_equal → x <= y

Logical:
logical_and → x && y
logical_or → x || y
logical_not → ! x

• Compute the by-element addition of two lists of integer values, placing the result
back into the first list:

transform(listOne.begin(), listOne.end(),
listTwo.begin(), listTwo.begin(), plus<int>());

CS 318, FALL 2012 FUN WITH TEMPLATES/11

ACCESS STATE INFORMATION IN FUNCTIONS

• Functions declared as objects can also access state information (much like static
local variables, only simpler to control)

class iotaGen
{
public:

iotaGen (int start = 0) : current(start) { }
int operator() () { return current++; }

private:
int current;

};

int main {
vector<int> aVec(20);
generate(aVec.begin(), aVec.end(), iotaGen(1));

}

CS 318, FALL 2012 FUN WITH TEMPLATES/12

STL ALGORITHMS

• Algorithms already defined in the STL (implemented as function templates):

template <class _Tp>
const _Tp& min(const _Tp& __a, const _Tp& __b) {

return __b < __a ? __b : __a;
}

template <class _Tp>
const _Tp& max(const _Tp& __a, const _Tp& __b) {

return __a < __b ? __b : __a;
}

CS 318, FALL 2012 FUN WITH TEMPLATES/13

MORE INTERESTING STL ALGORITHMS

• Search:
template <class Iter, class Predicate>
Iter find_if (Iter begin, Iter end, Predicate pred);

• Binary search:
template <class Iter, class Val>
Iter find (Iter begin, Iter end, Val what);

• Counting:
template <class Iter, class Val>
Iter count (Iter begin, Iter end, Val what);

• Sorting:
template <class RandomIter>
RandomIter sort (RandomIter begin, RandomIter end);

• Merging two sorted lists:
template <class Iter>
Iter merge (Iter begin1, Iter end1, Iter begin2, Iter end2, Iter dest);

CS 318, FALL 2012 FUN WITH TEMPLATES/14

