
ON FUNCTIONS AND THEIR USE

• To inline or not to inline.

• Member versus free functions.

CS 318, FALL 2012 ON FUNCTIONS AND THEIR USE/1



INLINE FUNCTIONS

• Definable using the inline keyword or defining them inside the class.

• Means that inline substitution of the function body at the point of call should be
preferred to the usual function call mechanism.

• Supposedly more efficient, but there are problems:

– code bloat. usually, a larger executable means slower execution time because
the system can cache a smaller portion of the program.

– dynamic linking. it’s nearly impossible to maintain binary compatibility between
different versions of a binary file if an inline function’s body has changed.

– premature optimization. to assess whether inlining a given function improves
performance, one must use a profiler and isolate the tested code from various
confounding variables such as debug vs. release versions, current system load
and so on. Your compiler is usually better than you at optimizing things.

• Inline functions may boost performance (in some cases dramatically), but in most
cases they are redundant or even harmful.

CS 318, FALL 2012 ON FUNCTIONS AND THEIR USE/2



MEMBER VERSUS FREE FUNCTIONS

• Consider find_first_of, currently a member of class string.

s.find_first_of(0x0d); // member function
find_first_of(s, 0x0d); // free function

Which one is better?

– Both are just as readable, but the free variant can also be applied on vectors,
lists, etc.

– A free function would not have access to the innards of the object so there is no
danger to invalidate its state.

∗ Provided that the rest of the public interface is solid, find_first_of taken
out can never kill your string

– Prevent the fat interface syndrom: a type should only have those opperations
that are inherently meaningful for the said type.

∗ find_first_of is not an essential operation for string types, it is more of a
utility

CS 318, FALL 2012 ON FUNCTIONS AND THEIR USE/3



MEMBER VERSUS FREE FUNCTIONS

• Consider find_first_of, currently a member of class string.

s.find_first_of(0x0d); // member function
find_first_of(s, 0x0d); // free function

Which one is better?

– Both are just as readable, but the free variant can also be applied on vectors,
lists, etc.

– A free function would not have access to the innards of the object so there is no
danger to invalidate its state.

∗ Provided that the rest of the public interface is solid, find_first_of taken
out can never kill your string

– Prevent the fat interface syndrom: a type should only have those opperations
that are inherently meaningful for the said type.

∗ find_first_of is not an essential operation for string types, it is more of a
utility

CS 318, FALL 2012 ON FUNCTIONS AND THEIR USE/3



RELATED POINTS

• string is considered a typical example of fat interface.

• Better argument can be made for to_lower as member function.

– but who is to say that your string must be represented by the string class?

– vector<char>, char arrays, MFC CString and other custom classes are also
widely used.

– having an iterator and an algorithm is far more flexible

• Consider passing a container to the algorithms instead of the first and last iterators.

– you could call the iterator version from the algorithm

– but you would then be making the assumption that all containers have begin and
end member functions defined.

– you thus rule out using the algorithms on C arrays.

CS 318, FALL 2012 ON FUNCTIONS AND THEIR USE/4



CONCLUSION

• Say no to bloated interfaces.

– Provide type implementations in your classes, with minimal interfaces.
– The place of the rest of your algorithm should be in (generic) functions.

• Algorithm:

if (f needs to be virtual)
make f a member function of C;

else if (f is operator>> or operator<<) {
make f a non-member function;
if (f needs access to non-public members of C)

make f a friend of C;
}
else if (f needs type conversions on its left-most argument) {

make f a non-member function;
if (f needs access to non-public members of C)

make f a friend of C;
}
else if (f can be implemented via C’s public interface)

make f a non-member function;
else

make f a member function of C;

CS 318, FALL 2012 ON FUNCTIONS AND THEIR USE/5



OOP: NOT A PANACEUM

I find OOP technically unsound. It attempts to decompose the world in
terms of interfaces that vary on a single type. To deal with the real prob-
lems you need multisorted algebras—families of interfaces that span
multiple types. I find OOP philosophically unsound. It claims that every-
thing is an object. Even if it is true it is not very interesting—saying that
everything is an object is saying nothing at all. I find OOP methodologi-
cally wrong. It starts with classes. It is as if mathematicians would start
with axioms. You do not start with axioms—you start with proofs. Only
when you have found a bunch of related proofs, can you come up with
axioms. You end with axioms. The same thing is true in programming:
you have to start with interesting algorithms. Only when you understand
them well, can you come up with an interface that will let them work.

References http://www.gamedev.net/community/forums/topic.asp?topic_id=267612
http://www.stlport.org/resources/StepanovUSA.html

CS 318, FALL 2012 ON FUNCTIONS AND THEIR USE/6


