
SPLITTING THE CODE

• Sometimes we like to split our program into multiple files (or modules).

• Advantages: encapsulation, reusability, size.

– We can also reduce compilation time.

• A module consists in two parts:

– the header file, where all the declarations available outside the module go
(e.g., list.h)

– the C/C++ code which implements the things declared in the header
(e.g., list.cc)

• Another module (say main.cc) that wants to use list.cc will do

#include "list.h"

– Then list.cc and main.cc will be compiled and linked together.

∗ We use for this purpose a makefile.

CS 318, FALL 2012 WORKING WITH MULTIPLE FILES/1

MAKEFILES

• A makefile contains macrodefinitions, e.g.,

this is a comment
CXX = g++
CXXFLAGS = -g -Wall -Werror -ansi -pedantic
OBJ = main.o list.o

• Then we have rules of the form:

source1[] source2][source3[]target :

command1

command2

command3
...

Exactly one TAB on each line here!

– a target is the name of the file to be produced

∗ it is produced by executing the corresponding commands

– the sources are the files needed to produce the target (if any)

CS 318, FALL 2012 WORKING WITH MULTIPLE FILES/2

MAKEFILES (CONT’D)

• Example of rules:

all: test_list

list.o: list.h list.cc
$(CXX) $(CXXFLAGS) -c -o list.o list.cc

main.o: list.h main.cc
$(CXX) $(CXXFLAGS) -c -o main.o main.cc

test_list: $(OBJ)
$(CXX) $(CXXFLAGS) -o test_list $(OBJ)

clean:
rm -f test_list * ˜ * .o * .bak core \# *

• You type make target in some directory d .
– make without arguments produces the first target in the (default) makefile.

• The command looks for a file called Makefile in d and produces the file target .

• All the targets needed by target are also made, unless they are up to date.

CS 318, FALL 2012 WORKING WITH MULTIPLE FILES/3

PUTTING THE FILES TOGETHER

High level code

Compiler

Assembly language program

Assembler

Object code

High level code

Compiler

Assembly language program

Assembler

Object code

Headers

LinkerLibrary

Executable program
test_list

list.cc

list.s

list.o

main.cc

main.s

main.o

g++ −o test_list list.o main.o

g
+

+
 −

c
−

o
 li

st
.o

 li
st

.c
c

g
+

+
 −

c −
o

 m
a

in
.o

 m
a

in
.cc

list.h

CS 318, FALL 2012 WORKING WITH MULTIPLE FILES/4

