POINTERS

e What is a pointer?

— The index of a book contains pointers.

A URL (e.g., http://turing.ubishops.ca/home/cs318) is a pointer.
A street address is a pointer.
What is then a forwarding address?

CS 318, FALL 2012

POINTERS (CONT’'D)

ARRAYS, POINTERS, STRUCTURES/1

e Pointers can (just as array indices) be stored in variables.

e If we have some type d, then

d VX; — vX Is a variable of type d

d* pXx; — px is a (variable holding a) pointer to a variable of type d
&vx — denotes the address of vx (i.e., a pointer, of type dx)

* pX — denotes the value from the memory location pointed at

by px, of type d (we thus dereference px)

cout << x; 7= 11

Xy P e
- -
/7830 X 8991 9001
[(&x) (&px) (&ppx)
| N -
| “ ~
int x = 10; J S e Ex o+ L
int* px = &; — _
int** ppx = &X; —

POINTERS

e What is a pointer?

— The index of a book contains pointers.

— A URL (e.g., http://turing.ubishops.ca/home/csc218) is a pointer.

— A street address is a pointer.
— What is then a forwarding address?

% a pointer to a pointer!

e OK, sowhat is a (C++) pointer?

— Computer memory contains data which can be accessed using an address.

+ A pointer is such an address, nothing more.

— If you want, computer memory is like an array holding data.

+ A pointer then is an index in such an array.

— What are in fact pointers?

CS 318, FALL 2012

WHAT POINTERS REALLY ARE

ARRAYS, POINTERS, STRUCTURES/1

e Since a pointer is an address, it is usually represented internally as

unsi gned int.

e Do we need a type for a pointer?

- Why?

— Always?

CS 318, FALL 2012

ARRAYS, POINTERS, STRUCTURES/2

CS 318, FALL 2012

ARRAYS, POINTERS, STRUCTURES/3

WHAT POINTERS REALLY ARE

e Since a pointer is an address, it is usually represented internally as

unsi gned int.

e Do we need a type for a pointer?
- Why?

— Always?

int x=10;
void* p = &x;
int = pi;
float* pf;

pi = (int*)p;
pf = (float*)p;

cout << "Pointer " << p << " holds the int: "<< *pi
<< " ...and the float: " << xpf << "\n";

e Special pointer (of type voi d*): NULL (really, 0), which points to nothing.

CS 318, FALL 2012

POINTER ARITHMETIC

ARRAYS, POINTERS, STRUCTURES/3

e The types of pointers do matter:

1. We know what we get when we dereference a pointer
2. We can do meaningful pointer arithmetic

int i=10; long j=10;
int xx = & ; long *y = & ;
int *xx1 = x + 3; long *yl =y + 3;
int *xx2 = x - 2; long *y2 =y - 2;
y
X-2 X+3
Memory%fff ,,,g
O O O O O O O O O O O o o
X X X X X X X X X X X X X
W W W W ww wwwwhrs s~ D
ERXRBRBIEBREDIIEIRERNOO®
NN NN NN NN NN NN
© © © © ©W VO © ©W © © O © O
P PP PP DNDNDNDNDNDNDNDNDDN
WO OMmMmTORNWHROEOO N

e Meaningful pointer arithmetic?!?

CS 318, FALL 2012

ARRAYS, POINTERS, STRUCTURES/4

POINTER ARITHMETIC

e The types of pointers do matter:
1. We know what we get when we

dereference a pointer

2. We can do meaningful pointer arithmetic

int i=10; long j=10;

int xx = & ; long *y = & ;

int *x1 = x + 3; long *yl =y + 3;

int *xx2 = x - 2; long *y2 =y - 2;

X-2 X X+3

Memory%fff ,,,g
O O O O O O O O O O O o o
X X X X X X X X X X X X X
W W W W ww wwwwhbsd s~ b
E RSB REAEDISISERERNO®O®
N N N N N B B R B BN N NN
© © © © ©W VO © ©W © © © © O
P P P PP DNDNDNDNDNDNDNDNDN
WO OMmMmTORNWHROEO O N

e Meaningful pointer arithmetic?!?

CS 318, FALL 2012

POINTER ARITHMETIC

ARRAYS, POINTERS, STRUCTURES/4

e The types of pointers do matter:
1. We know what we get when we

dereference a pointer

2. We can do meaningful pointer arithmetic

int i=10; long j =10;
int xx = & ; long *y = & ;
int *x1 = x + 3; long *yl =y + 3;
int *xx2 = x - 2; long *y2 =y - 2;
y-2 y y+3
X-2 X+3
Memory%fff ,,,g
O O O O O O O O O O O o o
X X X X X X X X X X X X X
W W W W ww wwwwhbsd s~ D
E RSB BREBREDIISERERNO®O®
NN NN NN NN NN NN
© © © © ©W VO © ©W © © © © O
P PP PP DNDNDNDNDNDNDNDNDDN
WO OMmMmTORNWROEO O N

e Meaningful pointer arithmetic?!?

CS 318, FALL 2012

ARRAYS, POINTERS, STRUCTURES/4

ARRAYS AND POINTERS

e An array is just a pointer to its content:

float nuns[6] = {1,2,3}

S = & ™ < o
£ g £ g £ g
nums ///7\\‘ 2 2 2 2 2 2
¢
Memory --- | 72466 - 1.0 2.0 3.0 -
10201 72466 72467 72468 72469 72470 72471

— In addition, when you declare an array (contiguous) memory space is also re-
served to hold its elements.

e What do they all mean?

float nuns[6] = {1, 2, 3}; int nuns[6] = {1,2,3};
float* pl = nuns; int* pl = nuns;
float* p2 = nums + 3; int* p2 = nuns + 3;
CS 318, FALL 2012 ARRAYS, POINTERS, STRUCTURES/5

ARRAY SUBSCRIPTS

e We access elements in an array precisely as we do it in Java:
— cout << Xx[6]; printsthe seventh element of x
— x[5] = 20; assigns 20 to the sixth element of x

e The subscript operator [] is in fact implemented usingpointer arithmetic
— X[5] is a shorthand for (and thus a perfect equivalent to) & +5.
— the subscript operator works with any pointer, not just with arrays.
— it does correct pointer arithmetic so that we access the intended element
y-2 y y+3
3
a8 e

Memorygfff g

X[-2]
X—2

a16.v€X0
OT6LYEX0
aT6.LyeEX0
3T6.VEX0
4T6.VEX0
026.¥EX0
TZ6.LYEX0
226.7EX0
€26.YEX0
¥26.7EX0
GZ6LEYX0
926.LEVX0
L26LEVX0

CS 318, FALL 2012 ARRAYS, POINTERS, STRUCTURES/7

ARRAYS VERSUS POINTERS

e The following declarations mean almost the same thing:
int* nunmsP;
int nunsA[20];

e Because we have:

numsA[2] = 17; — Good
nunmsP[2] = 17; — Disaster!

— Prize for the most uninformative error message goes to
“Segnentation fault.

e But it is perfectly good to do:
int numsP[] = {1, 2, 3};

e In other words, you do not have to provide the dimension for an array if you initialize
it at the moment of declaration (e.g., by providing a literal array).

CS 318, FALL 2012 ARRAYS, POINTERS, STRUCTURES/6

ARRAYS, POINTERS, AND FUNCTIONS

#i ncl ude <iostrean
usi ng namespace std;

void transl ate(char a) {

if (a=="A) a='5,; elsea="0;
}
void transl ate(char* array, int size) {
for (int i =0; i < size; i++) {
if (array[i] == "A") array[i] ='5";
else array[i] ='0";
}
}

int main () {
char mark = "A'; char marks[5] = {"A,'F ,"A,'F ,'F},;
transl ate(nark);
transl at e(mar ks, 5) ;
cout << mark << "\n";
for (int i =0; i <5; i++4)
cout << marks[i] << " ";
cout << "\n";

}

CS 318, FALL 2012 ARRAYS, POINTERS, STRUCTURES/8

ARRAYS, POINTERS, AND FUNCTIONS

#i ncl ude <iostreanp
usi ng namespace std;

void transl ate(char a) { /1 translate, by the way, is a OVERLOADED FUNCTI ON
if (a=="A) a="'5; elsea="0;

}
void transl ate(char* array, int size) {
for (int i =0; i < size; i++) {
if (array[i] == "A") array[i] ='5";
else array[i] ='0";
}
}

int min () {
char mark = "A'; char marks[5] = {"A,'F ,"A,'F ,'F},;
transl ate(nark);
transl at e(mar ks, 5) ;
cout << mark << "\n";
for (int i =0; i <5; i++4)
cout << marks[i] << " ";
cout << "\n";

}
CS 318, FALL 2012

A
50500

ARRAYS, POINTERS, STRUCTURES/8

POINTERS AND FUNCTIONS

e An argument can be passed in C++ to a function using:

— Call by value: the value of the argument is passed; argument cannot be changed
by the function.

int aFunction(int i);

— Call by reference: the pointer to the argument is passed to the function; argu-
ment can be changed at will by the function.

int aFunction(intx i);
Used for output arguments (messy, error prone syntax).

— Call by constant reference: the pointer to the argument is passed to the function;
but the function is not allowed to change the argument.

int aFunction(const int* i);
more useful:

int aFunction(const char* i);
Used for bulky arguments (still messy syntax).

CS 318, FALL 2012 ARRAYS, POINTERS, STRUCTURES/10

ARRAYS, POINTERS, AND FUNCTIONS (CONT’D)

#i ncl ude <iostrean
usi ng namespace std;

int translate(char a) { // still overloaded...
if (a=="A) a="'5; elsea="0;
return a;
}
void translate(char* array, int size) {
for (int i =0; i < size; i++) {
if (array[i] == "A") array[i] ='5";
else array[i] ='0";
}
}

int min () {

char mark = "A'; char marks[5] = {"A,'F ,"A,'F

mark = translate(nmark);

transl at e(mar ks, 5) ;

cout << mark << "\n";

for (int i =0; i <5; i++4)
cout << marks[i] << " ";

cout << "\n";

}

5
50500

CS 318, FALL 2012

CALL BY REFERENCE

ARRAYS, POINTERS, STRUCTURES/9

foo.cc
void increment (intx i) {
*io= i o+ 1

}

void increnentl (const int* i) {
*i o= % + 1;

}

int min () {
int n=0;
i ncrenent (&n);
i ncrenent 1(&n);

}

g++ -Wall foo.cc

foo.cc: In function ‘void increnentl(const int =)
foo.cc:9: assignment of read-only |ocation

CS 318, FALL 2012

ARRAYS, POINTERS, STRUCTURES/11

CALL BY REFERENCE (CONT’D)

foo.cc
void increment (int&i) {
i =i + 1
}
void increnentl (const int& i) {
=0 +1;
} — no more messy syntax!

int min () {
int n=0;
increnent(n);
increnment1(n);

}

g++ -Wall foo.cc

foo.cc: In function ‘void increnentl(const int &’:
foo.cc:9: assignment of read-only reference ‘i’

CS 318, FALL 2012 ARRAYS, POINTERS, STRUCTURES/12

CALLING CONVENTIONS IN C++ AND JAVA

e The following are the implicit calling conventions:

What Java C++
Primitive types value value
(int,float,etc.)

Arrays reference value
Objects reference value

— In C++ everything is passed by value unless explicitly stated otherwise.

Arrays are apparently passed by reference, but only because of the array struc-
ture (pointer + content).

e In Java there is no other way to pass arguments than the implicit one.

e In C++ you can request that an argument be passed by reference by either passing
a pointer to the actual argument or by saying explicitly that you want to pass the
argument by reference.

CS 318, FALL 2012 ARRAYS, POINTERS, STRUCTURES/14

CALL BY REFERENCE (CONT’D)

foo.cc
#i ncl ude <i ostrean
usi ng namespace std;

void increment (int&i) {
i =i + 1

}

int incrementl (const int& i) {
int r =i +1;

return r;

} output

int min () { 2
int n=0;
increnment (n);
cout << n << "\n";
n = incrementl(n);
cout << n << "\n";

CS 318, FALL 2012 ARRAYS, POINTERS, STRUCTURES/13

C STRINGS

e There is no special type for strings.

— Instead, strings are simply arrays of characters.
+ Literal strings can be written surrounded by double quotes though.
char nmessage[20] = "Hello.";

— The last character in a string is always the null byte (' \ 0’). So if you declare a
string of size 20 it will hold a maximum of 19 characters.

x C does not check for array overflow, so be careful not to go over the array
size.

— You can access individual characters just as you access elements in a normal
array:

message[1] = 'x';

e Strings cannot be compared using the usual comparison operators (e.g., ==) (why?).

— Use st rcnp instead.

CS 318, FALL 2012 ARRAYS, POINTERS, STRUCTURES/15

OPERATIONS ON STRINGS STRUCTURES

e An array holds a number of elements of a given type.

— Individual elements are referred to by integer indices.
e You can implement your own operations on strings (just do not forget about the null
byte at the end). e By contrast, a structure holds elements of not necessarily the same type.

— ivi li .
e Some operations are already defined for you though, including: Individual elements are referred to by symbolic names

. — Of course, we cannot thus loop over the members of a structure.
— Copy a string: strcpy (see nan strcpy)
— Length of a string: strl en (see man strlen) e For instance, a structure representing a student might contain

. . — the given name and surname (strings),
e Just do not forget to include the appropriate header: g (9s)

#incl ude <string. h> — the student number (integer),

— the mailbox number (integer), and

— the grade point average (floating point).

CS 318, FALL 2012 ARRAYS, POINTERS, STRUCTURES/16 CS 318, FALL 2012 ARRAYS, POINTERS, STRUCTURES/17
STUDENT STRUCTURE STUDENT STRUCTURE
struct student { struct student {
char* nane; char* nang;
char* surname; char* surname;
unsi gned int nunber; unsi gned int nunber;
unsi gned short nail box; unsi gned short nail box;
fl oat gpa; fl oat gpa;
I I

int main () {
student studs[5];

studs[0] . name = "Jane";
studs[0] . surname = "Doe";
studs[0] . nunber = 1234567;
studs[1].name = "John";
studs[1].surname = "Smith";
studs[1] . nunber = 7654321,

cout << studs[1].name << << studs[1] . surnane
<< " (" << studs[1].nunmber << ")\n";

CS 318, FALL 2012 ARRAYS, POINTERS, STRUCTURES/18 CS 318, FALL 2012 ARRAYS, POINTERS, STRUCTURES/18

POINTERS TO STRUCTURES LINKED LIST

struct cons_cell {

e Let's do something useful: a (linked) list (of integers). nil int car;
cons_cel | » cdr;

list .
list b
cdr typedef cons_cell* list; /1 careful, could be bad programm ng practice!
const list nil = 0;
Nothing!

int null (list cons) {

car cdr return cons == nil;
cons_cell Nothing! list cons (int car, list cdr = nil) {
list new_cons = new cons_cell;
new_cons -> car = car; /'l (*new_cons).car = car;
° Interesting operations: new_cons -> cdr = cdr; /'l (*new_cons).cdr = cdr;
return new_cons;
Operation Meanlng_ _ int car (list cons) {
cons adds an |nte_ger to the list _ return cons -> car:
car returns the first element of a list))
cdr returns a list without its first element list cdr (list cons) {
null returns true iff the list is empty) return cons -> cdr;
CS 318, FALL 2012 ARRAYS, POINTERS, STRUCTURES/19 CS 318, FALL 2012 ARRAYS, POINTERS, STRUCTURES/20
NEW (AND DELETE) DYNAMIC MEMORY MANAGEMENT
int foo () { int min () {
llocat f data. The followi h ivalent: cons_cel | ci f00()
e newallocates memory for your data. The following are (somehow) equivalent: list | = new cons_cell;) foo();
char nessage[256] ; char* pnessage; 1 2apli

pnressage = new char[256];

— Exception:
* message takes care of itself (i.e., gets deleted when it is no longer in use),
whereas
* prmessage however must be explicitly deleted when it is no longer needed:

del ete[] pnessage; -

— Perrils of not using new.
list cons (int car, list cdr = nil) { C
cons_cel |l new_cons;
new_cons. car = car;

Heap

get

new_cons. cdr = cdr; inlt' "Big ((j) { o
return &ew cons; ist bad = cons(1);
} - cout << car(bad); — Boom! | Memory J

Conclusion: ¢foo returns| < foo returns ¢

CS 318, FALL 2012 ARRAYS, POINTERS, STRUCTURES/21 CS 318, FALL 2012 ARRAYS, POINTERS, STRUCTURES/22

USING LINKED LISTS

list rmth (list cons, int which) {
list place = cons;

for (int i =0; i <which- 1; i++) {
if (null(place))
br eak;

pl ace = place -> cdr;
}
if (! null(place)) {

if (null(cdr(place)))

place -> cdr = nil;

el se

place -> cdr = cdr(place -> cdr);
}
return cons;

}

CS 318, FALL 2012

MEMORY LEAKS

ARRAYS, POINTERS, STRUCTURES/23

e A good example:

list rmth (list cons, int which) {
list place = cons;

for (int i =0; i <wiich- 1; i++) {
if (null(place))
br eak;

place = place -> cdr;
}
if (! null(place)) {
if (null(cdr(place)))

place -> cdr = nil;
el se

place -> cdr = cdr(place -> cdr);
}

return cons,;

e If you create something using newthen you must eventually delete it using del et e.

CS 318, FALL 2012

ARRAYS, POINTERS, STRUCTURES/25

USING LINKED LISTS (CONT'D)

int min () {
int elm=-1;
list Ist =nil;
while (elm!=0) {
cin > elm
if (elm!=0)
Ist = cons(elmlst);

Ist = rmth(lst,1);
Ist = rmth(lst,10);
cout << "List is:\n";
list iter = Ist;
while (! null(iter)) {
cout << car(iter) << "\n";
iter = cdr(iter);
}
}

1%}
=

is:

CS 318, FALL 2012

SAY NO TO MEMORY LEAKS

ARRAYS, POINTERS, STRUCTURES/24

list rmth (list cons, int which) {
list place = cons;

for (int i =0; i <which- 1; i++) {
if (null(place))
br eak;

pl ace = place -> cdr;
}
if (! null(place)) {
if (null(cdr(place)))
place -> cdr = nil;
el se {
list to_delete = cdr(place);
place -> cdr = cdr(place -> cdr);
del ete to_del ete;

}

return cons;

}

CS 318, FALL 2012

ARRAYS, POINTERS, STRUCTURES/26

STUDENT STRUCTURE, TAKE TWO

e The following won't work. Why? What would happen if it would work?

struct student {
char nang[20] ;
char surname[20] ;
unsi gned int nunber;
unsi gned short nail box;
fl oat gpa;

}

int min () {
student studs[5];

studs[0] . name = "Jane";
studs[0] . surnanme = "Doe";
studs[0] . nunber = 1234567,
studs[1] . name = "John";
studs[1].surname = "Smth";
studs[1] . nunber = 7654321;
cout << studs[1].nane << " " << studs[1].surnanme
<< " (" << studs[1].nunmber << ")\n";
}
CS 318, FALL 2012 ARRAYS, POINTERS, STRUCTURES/27

THE PERILS OF DELETE

e Thou shall not leak memory, but also:

e Thou shall not leave stale pointers behind.

char* str = new char[128]; — allocate memory for st r
strcpy(str,"hello"); — put something in there (“hello”)
charx p = str; — p points to the same thing

del ete p; — “hello” is gone,

str is a stale pointer!!

e Thou shall not dereference deleted pointers.
strepy(str,"hi"); — str already deleted!!

e Thou shall not delete a pointer more than once.
delete str; — str already deleted!!

— You can however delete null pointers as many times as you wish!

CS 318, FALL 2012 ARRAYS, POINTERS, STRUCTURES/29

STUDENT STRUCTURE, TAKE TWO (CONT'D)

e The following does work.

struct student {
char nang[20] ;
char surname[20] ;
unsi gned int nunber;
unsi gned short nail box;
fl oat gpa;

s

int min () {
student studs[5];
strncpy(studs[0].nane, "Jane", 20);
strncpy(studs[0].surnane, "Doe", 20);
studs[0] . nunber = 1234567,
strncpy(studs[1]. nange, "John", 20);
strncpy(studs[1].surname, "Snith", 20);
studs[1] . nunber = 7654321;
cout << studs[1].nane << " " << studs[1].surnane
<< " (" << studs[1].nunmber << ")\n";

CS 318, FALL 2012 ARRAYS, POINTERS, STRUCTURES/28

THE PERILS OF DELETE

e Thou shall not leak memory, but also:

e Thou shall not leave stale pointers behind.

char* str = new char[128]; — allocate memory for st r
strcpy(str,"hello"); — put something in there (“hello”)
charx p = str; — p points to the same thing

del ete p; — “hello” is gone,

str is a stale pointer!!

e Thou shall not dereference deleted pointers.
strepy(str,"hi"); — str already deleted!!

e Thou shall not delete a pointer more than once.
delete str; — str already deleted!!

— You can however delete null pointers as many times as you wish!
— So assign zero to deleted pointers whenever possible (not a panaceum)

CS 318, FALL 2012 ARRAYS, POINTERS, STRUCTURES/29

THE PERILS OF DELETE (CONT’'D)

struct prof {
char* nare;
char* dept;

char *csc = new char[30];

strcpy (csc, " Conputer Science");

prof *stefan, *dimtri, *bruda;
stefan = new prof; dimitri = new prof;
stefan—>name = new char[30];
dimitri->name = new char[30];

strcpy(stefan—>name,"Stefan Bruda");
strepy(dimitri->name,"Dimitri Vouliouris");

stefan->dept = csc;
dimitri->dept = csc;

/I Delete dimitri

delete dimitri->name;

delete dimitri;

}\’ Exogenous data
\

Imitrt ¢ OK -
delete dimitri->dept; e

/I Copy stefan
bruda = new prof;

/I (a) Shallow copying

bruda->name = stefan->name;
bruda—->dept = stefan—>dept;

/I Can we delete stefan now??
/I (b) Deep copying

bruda->name = new char[30];
bruda->dept = new char[30];
strcpy(bruda.name,stefan.name);
strcpy(bruda.dept,stefan.dept);

/I Can we delete stefan now??

Indigenous data

CS 318, FALL 2012

ARRAYS, POINTERS, STRUCTURES/30

