
TWO LANGUAGES FOR THE PRICE OF ONE

• Before being passed to the compiler proper, your program passes through a prepro-
cessor.

– Your program is passed first to the preprocessor, and the result is further passed
to the C++ compiler.

• The preprocessor has a language of its own.

– This language is not part of C++.
– In particular, it has a different syntax, and requires a different mindset to use.
– Most problems occur when the preprocessor is treated like C++.
– The preprocessor language is tailored to the task of translating code.

• In a C++ program, you should not abuse the preprocessor.

– Use it when needed.
– Use it to increase efficiency, but only if you can think of no alternative (and keep

in mind that such increased efficiency is often not justified).
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INCLUDE DIRECTIVES

• The functionality of the preprocessor is based on directives.

• A preprocessor directive starts with a # character and extends to the end of line.
– There is no terminating semicolon.

• A useful directive:

#include <iostream>
#include "lists.h"

• The effect of #include "foo.h" is the replacement of the directive with the con-
tent of the file “foo.h”.

– Filenames can be passed to #include using an absolute (e.g.,
/usr/include/stdio.h) or relative (e.g., sys/stat.h) path.

∗ Under Windows, you should use the backslash (\) instead of slash (/).
∗ As opposed to C++ proper, do not use \\!

– Relative to what?

∗ To predefined directories with known headers, and to the current directory (.).
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INCLUDE DIRECTIVES (CONT’D)

• There are two variants of an include directive.

#include <iostream>
#include "lists.h"

• The difference is the order in which the directories are searched for the respective
file.

– The angle bracketed version causes the preprocessor to look into the predefined
directories first.

– The double quoted variant tells the preprocessor to look first in the current direc-
tory.

– The latter is normally used to include the headers written by you.
– Proper use of these variants is a matter of self-documentation of the code, and

is thus encouraged.

• The #include directive is intended for inclusion of header files. Using it like this:

#include "btree.cc"

is certainly possible, but is very bad programming practice. (why?)
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CONDITIONAL COMPILATION

• Problem. We want to build a program that compiles under Windows as well as Unix.
What do we do with the #include directives?

• Solution. We use conditional compilation:

#ifndef __MSDOS__
#include <sys/stat.h>
#else /* __MSDOS__ */
#include <sys\stat.h>
#endif /* __MSDOS__ */

#ifdef __MSDOS__
const char* filename = "\\home\\bruda\\foo";
#else /* __MSDOS__ */
const char* filename = "/home/bruda/foo";
#endif /* __MSDOS__ */

• The portion of the file between #ifdef C and #endif is passed to the compiler if
and only if the “macro” C is defined using #define.

– Some macros are defined for you, and you can define more using #define in
your program or the -D switch of g++.
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CONDITIONAL COMPILATION (CONT’D)

• Another example of conditional compilation: debug code

#ifdef DEBUG
cout << "### added " << lst -> car << " to " << lst << "\n";
#endif /* DEBUG */

• Whenever you want to debug your program, you can define DEBUG as follows:

– In the code of the module you need to debug, by putting the following directive
at the beginning of the C++ file

#define DEBUG

– If your module is called foo, you can define DEBUG for it at compile time:

g++ -g -Wall -DDEBUG -o foo.o foo.cc

• You can also “undefine” a macro:

#undef DEBUG

CS 318, FALL 2012 THE C++ PREPROCESSOR/5

MORE DEFINE DIRECTIVES

• We defined up to this point macros without values.

– I.e., they either exist or not.

– Useful for conditional compilation.

• We can also associate values with our macros.

#define SIZE 128

In general, we write: #define Name Substitute-text

– The effect: the string Name is literally and globally replaced with the string
Substitute-text throughout the code before the code is passed to the C++ com-
piler.
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MACROS VERSUS CONST VARIABLES

• Compare:
#define SIZE 128
const int SIZE = 128;

• const variables are preferred over macros.

– A variable declaration uses familiar syntax.
– The syntax of a variable declaration is checked immediately.

∗ The syntax of a #define directive is checked when it is first used.
∗ The error line reported by the compiler is not the line where the error actually

happens!

– A variable declaration follows scoping rules; a #define directive is always
global.

– It might be the case that a macro produces more efficient code, but the efficiency
gain is negligible for most normal programs.

• Sometimes, however you are better off if you use macros.

– How would you define the constant NULL?
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UNEXPECTED RESULTS

1. // Real error on line 2:
2. #define BIG_NUMBER 10 ** 10
3.
4. int main () {
5. int i = 0;
6. while ( i < BIG_NUMBER ) // Error signalled on line 6!
7. i *= 10;
8. }

1. #define A_NUM 7
2. #define ANOTHER_NUM 6
3. #define A_SUM A_NUM + ANOTHER_NUM
4.
5. cout << "Squared sum: " << A_SUM * A_SUM << "\n";

1. #define MAX =10
2.
3. for (counter=MAX; counter > 0; counter --) // error and warning here!
4. cout << "Hello\n";
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THINGS YOU CAN BUT SHOULD NOT DO WITH MACROS

• Obscure the basic control flow of a program:

#define FOR_ALL for (int i = 0; i < ARRAY_SIZE; i++)

FOR_ALL {
data[i] = 0;

}

• Obfuscate your code, e.g., by using a half-C++, half-Pascal language:

#define begin {
#define end }

if (index == 0)
begin

data[i] = -1;
end
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PARAMETERIZED MACROS

• Macros can also take parameters:

#define SQR(x) ((x) * (x))
#define MAX(x,y) ( (x) < (y) ? (y) : (x) )
#define RECIP (x) ( 1.0 / (x) )

for (int i = 0; i < 10; i++)
cout << SQR(i);

cout << MAX(1,2) << " " << RECIP(1); // undefined variable x!

• Never put inside parameterized, arithmetic macros operations with side effects (such
as ++).

– In other words, differentiate between macros that do arithmetic and macros that
contain statements, and never mix them.

• Do not separate the list of parameters from the name of the macro.
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RULES TO MINIMIZE TROUBLES

• Macros are sometimes unavoidable and/or make your life easier. But they tend to
create trouble if you abuse them and/or you make mistakes when defining them.

• When working with macros, KISS (keep it simple, stupid).

– define empty macro as you need them

– define parameterless macros if you cannot think of anything else

– think twice before declaring macros with parameters.

• Put brackets around everything in an arithmetic macro.

• When defining a macro with more than one C++ statement, surround it by braces.

• The preprocessor is not C++. Do not use C++ syntax.
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