
CSC 218, Assignment 3

Due Thursday, 13 March 2003 at midnight

This is basically a civilized wrapper to the functions on binary trees you already implemented.
Review the previous handout.

You can start this assignment from either your solution or my solution for the previous assign-
ment.

1. Implement binary trees over strings as a class btree. Exactly all the following member func-
tions should be public. No other data should be accessible outside the class, but the data type
for nodes (call it btree_node) should be accessible.

• Provide a void constructor, a copy constructor, and an assignment operator (i.e.,
operator=). Contrary to what I said here earlier, you may want to use deep copy for everything,
including the information held in nodes. If you do not do this, you will run into problems when
implementing the command check in Question 3.

• void btree::zap(btree_node* to_delete) behaves just as the function deltree
from Assignment 2 (except that it alters the member data instead of returning a new
tree). Specifically, given an object t of type btree, after calling t.zap(n) (for some
node n) t will contain the same tree as before, except that the subtree of t rooted at n
is erased and replaced with an empty subtree. Of course, if t does not contain n at all,
then t remains unchanged (but the memory allocated for the tree rooted at n should be
still deallocated).

• void btree::print(void) pretty prints the tree to an output stream. Print the tree
so that you can identify the actual structure of the thing. An simple inorder traversal
will not do. See the function printtree from my solution to Assignment 2 for an idea
of how the output should look like (although printing the pointers is obviously not
necessary).

• Also implement a suitable operator << for printing trees to an output stream in the same
form as the one printed by btree::print.

• Provide a suitable destructor, which deallocates all the allocated data.

Provide your implementation of binary trees so that it could be used in other programs, i.e.,
as a header and a C++ file.

2. Inherit publicly from class btree which you created in your answer to Question 1 to create
the class stree of search trees. Exactly all the following member functions should be public.

• Provide if necessary suitable constructors (including a copy constructor), assignment
operator, and destructor.

1

http://turing.ubishops.ca/home/csc218/trees.tar.gz�
http://turing.ubishops.ca/home/csc218/trees.tar�


• btree_node* stree::member(char* info) behaves just as memtree from Assign-
ment 2 does. It must return 0 (i.e., NULL) if info is not found. Specifically, given
an object t of type stree and a string s, calling t.member(s) returns the (pointer to) the
node that contains s or 0/NULL if there is no such a node in t.

• void stree::insert(char* info) behaves just as instree from Assignment 2 does.
That is, for some object t of type stree and some string s, after the call t.insert(s) t
will contain the same tree as before, except that it will also contain s.

• void stree::del(btree_node* node) behaves just as delnode from Assignment 2
does. Specifically, given an object t of type stree and a node n, calling t.del(n) will
result in t containing the same tree as before, sans the information held in node n.
For example, you must be able to delete one occurrence of a string s from a tree t by
doing t.del(t.member(s)).

Provide your implementation of search trees so that it could be used in other programs, i.e.,
as a header and a C++ file.

3. Using the class developed for Question 2, implement a program that operates interactively
on search trees. Specifically, the program accept commands from the standard input. Com-
mands are lines containing the name of the command, possibly followed by one argument
(on the same line, separated by a blank from the command name). All the commands operate
on one search tree (referred to henceforth as the “current tree”). The following commands
should be accepted by your program (arguments are shown in italics).

make

Creates anew an empty current tree. If a current tree exists, deletes all of its content and
reinitializes it as an empty tree.

member str
Prints yes or no depending on whether str is contained in the current tree. The argu-
ment str may contain blanks.

delete str
Deletes all the occurrences of str from the current tree. Again, the argument may contain
blanks.

insert str
Inserts str into the current tree. Duplicates are allowed, so str is inserted again even if it
already exists in the current tree. You do not have to ask, of course the argument may
contain blanks.

print

Pretty prints the current tree, so that not only its content but also its structure is visible.

list

Lists the information from the current tree in inorder, i.e., sorted.

check

Makes a backup of the current tree. Up to five most recent backups are kept. If there
are five backups already, the oldest will be discarded and the new one added.

2



restore

Restores the current tree from the most recent backup and deletes this backup. The
previous content of the current tree is discarded. If no backup exists, this command
behaves just like make.

Commands may be also specified by an unambiguous prefix. For instance, all of the follow-
ing commands should be accepted:

ma
i some string
in some other string
inse my string

However, the command m should not be accepted, because it is ambiguous (it may be either
make or member).

If a command other than make is issued before the current tree has been initialized, the com-
mand should have no effect and an suitable error message should be printed (however, your
program should not exit, but wait instead for the next command).

What to submit Make sure you review the submission guidelines on the course’s Web page.
Submit your answers to Questions 1, 2, and 3, together with a suitable makefile. Your answer

to Question 3 must be created by the default target with the name itree. Feel free to include any
other program that might tests parts of your implementation that is not tested by your answer to
Question 3.

Include a description of your tests, as well as an argument that your tests are complete.
I will subtract marks for blatant memory leaks, so be careful when allocating memory dynam-

ically.

3


