
CSC 218, Assignment 2

Due 20 February 2003 at midnight

As opposed to the linked list discussed in class (which is a linear data type), a binary tree is not
linear. A node in such a tree contain some information (say, strings of characters) and links to two
“children” (call them left and right child), which are themselves (possibly empty) binary trees. A
node with both children empty is called a leaf. The (only) node of a tree without a parent is called
the root node of that tree.

A search tree is a binary tree with the following additional property: Given any search tree t
holding information i in its root node and with left and right children l and r, respectively, it holds
that i is larger than any information stored in l, and strictly smaller than any information stored
in r.

Of course, a search tree only holds data that over which a total order relation exists. In par-
ticular, strings do have a (natural) total order, namely the “lexicographic” order, as established by
strcmp. We shall refer to this order in what follows.

In this assignment, you will implement and work with binary and search trees.

Note. The functions deltree, instree, and delnode described below receive a tree and returns the
altered tree. However, the tree content of the argument shall also be changed (i.e., these functions are
“surgical”). At a first look, the return type of these functions can thus be void instead of btree,
i.e., the following two calls would work be in most cases similar:

some_tree = deltree(some_tree,a_node_in_some_tree);
deltree(some_tree,a_node_in_some_tree);

However, the return value is needed when you change the root node. Indeed, the following two
calls are no longer equivalent, the second giving incorrect results:

some_tree = deltree(some_tree,some_tree);
deltree(some_tree,some_tree);

1. Implement a binary tree data type which holds strings (i.e., pointers to characters). That is,

• Define a suitable C++ structure for nodes in a binary tree, and a type btree for binary
trees (as some form of a pointer).

• Implement the following functions:

– btree mknode(char* info, btree left, btree right)
creates and returns a node holding info and with left and right as children. Use
shallow copy for info.

1

– btree deltree(btree tree, btree to_delete)
deletes the tree to_delete from tree and returns the result, i.e., tree (which will
be thus altered).

– char* key(btree tree)
returns the information (i.e., the pointer to the string) held in the root node of tree.

– btree lefttree(btree tree) and btree righttree(btree tree)
return the left and right child of tree, respectively.

Provide your implementation of binary trees so that it could be used in other programs, i.e.,
as a header and a C++ file.

2. Using the implementation of btree constructed for Question 1, implement the following
operations over search trees.

• btree memtree(btree tree, char* info)
searches for info in the search tree tree and returns the (pointer to the) node that holds
info; returns NULL whenever info is not in tree.
Searching for information i in a search tree t is performed as follows: If the information
in the root node of t is identical to i, return t. If on the other hand i is smaller than
the information held in the root node of t, set t to be the left child of t and repeat from
beginning. Finally, if i is larger than the information held in the root node of t, set t to
be the right child of t and repeat from beginning.

• btree instree(btree tree, char* info)
inserts info in the search tree tree and returns the result, which must also be a search
tree. The insertion process also alters tree. Use shallow copy for info.
Inserting in a search tree is accomplished by reaching the appropriate leaf node and
creating a new child of that leaf holding the new info.

• btree delnode(btree tree, btree node)
deletes the node node from tree and returns the result. Also changes tree.
Deleting a node n in a search tree is accomplished by finding the maximal node lm of
the left child of n, inserting into n the information contained in rr, and then deleting
(recursively) lm. Deleting lm is quite simple, because it has at most one child (and thus
you replace it with its sole child and then delete it physically).

Provide your implementation of search trees so that it could be used in other programs, i.e.,
as a header and a C++ file.

3. Using the search tree implementation developed for Question 2, implement the func-
tion void treesort(char** strings, int nstrings) which receives an array of strings
strings of length nstrings. Upon return of treesort, the array strings must be sorted in
lexicographic order.

Provide a function main that reads from standard input a number n, then n strings one per
line (read at most 1024 characres from each line), and prints to the standard output the n
strings sorted using treesort. I would prefer that your program does not print any prompt
when reading n or the strings.

2

What to submit Make sure you review the submission guidelines on the course’s Web page.
Submit your answers to Questions 1, 2, and 3, together with a suitable makefile. Your answer

to Question 3 must be created by the makefile with the name treesort. Target all must create
treesort and any other program you used to test your implementation. Tests must be provided
and must be documented.

3

