
DEBUGGING YOUR PROGRAM

• The debugging phase is the hardest of them all if the program is complex enough
and/or if it manipulates pointers.

• Serves two purposes:

– Testing before release (aka submission).

– Maintenance.

• Debugging techniques include:

– Verbose output

– Using interactive debuggers

– Code inspection

– The confessional
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SERIAL DEBUGGING

• Before you start debugging, save the “working” program in a safe place.

– During the debugging process, you may need to add debug code, or change
your code in order to try and eliminate the problems.

– If you find yourself barking up the wrong tree, you could painlessly start all over
again.

– It is also easy to remove the debugging code once debugging is complete.

• Even so, do identify clearly any changes you make in the program.
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VERBOSE OUTPUT

• Insert cout statements to see what’s going on.

1. Isolate the problem

– Put cout statements to see where data turns bad and/or the program ceases
to work.

∗ They will print critical data or simply messages that show you where you
are in the program.

– Keep it up until you locate the bug as tightly as you can.

– Something like a binary search.

2. Solve the problem

– Keep around cout’s that print critical data when you modify the buggy code.
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MAINTENANCE VERBOSE OUTPUT

• When a program is maintained, it is wise to keep the debugging code (i.e., those
cout’s) for the entire life of the program.

• Since this code is not needed all the time, surround it by #ifdef/#endif state-
ments, e.g.,

#ifdef DEBUG
cout << "+++ rmth: end of list, nothing to delete\n";

#endif

• Normally, DEBUG will not be defined, so the debugging code is not used.

• When you need to do debugging, define DEBUG, either directly in the files containing
your code, or by using the -D switch of g++, e.g.,

g++ -g -Wall -DDEBUG -o foo foo.cc

• You can also create appropriate targets into the makefile, so that make will construct
the normal program while, say, make debug will construct the verbose variant.
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COMMAND-LINE SWITCHES FOR VERBOSE OUTPUT

• The use of #ifdef has the disadvantage of requiring recompilation each time de-
bugging is desired.

• A smart alternative is to replace it with command-line switches.

• Normal way to obtain the command line arguments:

#include <iostream>
#include <unistd.h>
using namespace std;

int main (int argc, char** argv) {

cout << "------ remaining args: ------\n";
for (int i = 1; i < argc; i++) {

cout << "argv[" << i << "] = " << argv[i] << "\n"; } }
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COMMAND-LINE SWITCHES FOR VERBOSE OUTPUT

• The use of #ifdef has the disadvantage of requiring recompilation each time de-
bugging is desired.

• A smart alternative is to replace it with command-line switches.

• Obtain command line arguments by identifying switches:

#include <iostream>
#include <unistd.h>
using namespace std;

extern char *optarg;
extern int optind;

int main (int argc, char** argv) {
int c;
cout << "--------- options: ---------\n";
while ((c = getopt (argc,argv,"abcd:")) != -1) {

cout << "opt: " << (char)c << "\n";
if (optarg) cout << "-> arg: " << optarg << "\n";

}
argc -= optind - 1; argv += optind - 1;
cout << "------ remaining args: ------\n";
for (int i = 1; i < argc; i++) {

cout << "argv[" << i << "] = " << argv[i] << "\n"; } }
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COMMAND-LINE SWITCHES FOR VERBOSE OUTPUT (CONT’D)
int verbose[4] = {0,0,0,0};
const int vcar = 0; const int vcdr = 1;
const int vcons = 2; const int vrmth = 3;

int main (int argc, char** argv) {
int c;
while ((c = getopt (argc,argv,"v::")) != -1) {
if (optarg == NULL)

verbose[vrmth] = verbose[vcons] =
verbose[vcdr] = verbose[vcar] = 1;

else {
if (strcmp(optarg,"car") == 0)

verbose[vcar] = 1;
if (strcmp(optarg,"cdr") == 0)

verbose[vcdr] = 1;
if (strcmp(optarg,"cons") == 0)

verbose[vcons] = 1;
if (strcmp(optarg,"rmth") == 0)

verbose[vrmth] = 1;
}

}
... // stuff with car, cdr, cons, etc.
}

int car (list cons) {
if (verbose[vcar])

cout << "### car: " << cons
<< " -> car = "
<< cons -> car << "\n";

return cons -> car;
}
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INTERACTIVE DEBUGGERS

• Using a debugger is incredibly time consuming, and I do not recommend it; you can
get off track very easily.

• But if you have to have it, all Linux systems come with a powerful debugger called
gdb.

• Call gdb as gdb <program_name>. Then useful gdb commands include

run start execution of a program
break n places a breakpoint at line n

break f places a breakpoint at the beginning of function f .
delete i removes breakpoint number i
cont continues execution till the next breakpoint
print e computes e and prints the result
step executes a single line; steps into function calls
next executes a single line; skips function calls
list lists program
where prints the function call chain
info breakpoints prints breakpoint information
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OTHER DEBUGGING METHODS

• Believe it or not, the following do work, most often than not.

Code inspection. Get a coffee, a listing of your program, and a red pen; start to
read your program and do not hesitate to mark it heavily.

– Works especially after you isolated the bug to a relatively small piece of code.

The confessional

“Hey Pete, here is my program, it drives me crazy because it keeps seg-
ment faulting on me somewhere here. And I have nothing else in the damn
piece of code than a lousy printf which takes this string and this integer
and. . . sheesh, here it is, I forgot to erase this %s here, yay.”
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