
CS 403: Principles of Programming Languages

Stefan D. Bruda

Fall 2024



CS 403: POPL

Several subjects:
An introduction to functional programming using Haskell
An introduction to logic programming using Prolog
Formal description of programming languages
The compilation process (recursive descent)
A more in-depth look at the procedural paradigm

CS 403: Introduction (S. D. Bruda) Fall 2024 1 / 9



INTRODUCTION

Why are there so many programming languages?
Evolution = we’ve learned better ways of doin things over time
Socio-economic factors: proprietary interests, commercial advantage
Orientation toward special purposes
Orientation toward special hardware
Diverse ideas about what is pleasant to use
Hardware limitations (historical)

What makes a language successful?
Easy to learn (BASIC, Pascal, LOGO, Scheme)
Easy to express things, easy use once fluent, “powerful” (C++, Common
Lisp, APL, Algol-68, Perl, Python)
Easy to implement (C, BASIC, Forth)
Possible to compile to very good (fast/small) code (Fortran)
Backing of a powerful sponsor (COBOL, PL/1, Ada, Visual Basic)
Wide dissemination at minimal cost (Pascal, Turing, Java)

CS 403: Introduction (S. D. Bruda) Fall 2024 2 / 9



INTRODUCTION (CONT’D)

Why do we have programming languages?
Because writing machine code is painful

What is a language for?
Way of thinking → way of expressing algorithms

Languages from the user’s point of view

Abstraction of virtual machine → way of specifying what you want
Tell the hardware what to do without getting down to bits
Languages from the implementor’s point of view

Why study programming languages?
Make it easier to learn new languages (and programming techniques)

Some languages are similar; easy to walk down a family tree

Understand implementation rationales and costs
Choose between alternative ways of doing things, based on knowledge of
what will happen underneath

Gain a deeper understanding of the overall concept of programming

CS 403: Introduction (S. D. Bruda) Fall 2024 3 / 9



PROGRAMMING LANGUAGE CLASSIFICATION

Programming languages are grouped as follows:
Imperative

von Neumann → Fortran, Pascal, Basic, C
Object oriented → Smalltalk, Eiffel, Java, C++
Scripting languages → Perl, Python, JavaScript, PHP

Declarative
Functional → Haskell, ML, (somehow: Scheme, Common Lisp)
Logic & constraint-based → Prolog, VisiCalc, RPG

CS 403: Introduction (S. D. Bruda) Fall 2024 4 / 9



COMPILATION AND INTERPRETATION

No complier = no programmming language!

Pure compilation: The compiler translates the high-level source program
into an equivalent target program (typically in machine language), then
goes away:

Source program Target program

Input Output

Compiler

Target program

Pure interpretation: The interpreter stays around for the execution of the
program

The interpreter becomes the locus of control during execution

Source program

Input
Outputinterpreter

Interpretation offers greater flexibility and better diagnostics, but
compilation offers better performance

CS 403: Introduction (S. D. Bruda) Fall 2024 5 / 9



COMPILATION AND INTERPRETATION (CONT’D)

A common case is compilation or simple pre-processing, followed by
interpretation

Many language implementations include a mixture of compilation and
interpretation

Source program Intermediate program
Intermediate program

Input
Output

Compiler

Virtual machine

Compilation does not have to produce machine language for some
hardware

Compilation = translation from one language into another
Some compilers produce nothing but virtual instructions (Pascal P-code,
Java byte code, Microsoft COM+)

Compilation possibly preceded by a preprocessor

CS 403: Introduction (S. D. Bruda) Fall 2024 6 / 9



COMPILATION WORKFLOW

For languages that compile to executable code:

Preprocessor

Compiler

Assembler

Linker

Source code

Modified source code

Assembly language

Object code

Executable code

Libraries

For languages that run on a virtual machine: the assembler and linker
part are replaced by an interpreter (or virtual machine)

CS 403: Introduction (S. D. Bruda) Fall 2024 7 / 9



PHASES OF COMPILATION

Scanner (lexical analysis)

Parser (syntax analysis)

Semantic analysis

Intermediate code optimization

Target code generation

Target code optimization

Symbol table

Character stream

Token stream

Parse tree

Abstract syntax tree

Modified intermediate form

Target language

Modified target language

Scanner: divides program into
“tokens” (smallest meaningful
units)

Driven by regular expressions

Parser: discovers the syntactic
structure of a program

Driven by context-free grammar

Semantic analysis: discovers the
meaning of the program

Static analysis
Some other things can only be
figured out at run time

Intermediate form: tree-like
structure and/or some
machine-like language (but
machine independent)

Often a form of machine
language, but for an idealized
machine

CS 403: Introduction (S. D. Bruda) Fall 2024 8 / 9



PHASES OF COMPILATION (CONT’D)

Intermediate code optimization: produce code that does the same thing,
only faster

Algorithmic optimization

Code generation: produces assembly language for the target machine
Code optimization: machine-specific optimizations (use of special
instructions or addressing modes, reorder instruction to improve the load
on superscallar architectures, etc.)

Symbol table: all phases rely on a symbol table that keeps track of all the
identifiers in the program and what the compiler knows about them

This symbol table may be retained (in some form) even after compilation has
completed, for use by a debugger

CS 403: Introduction (S. D. Bruda) Fall 2024 9 / 9


