
A Brief (and Pretty Incomplete) History of
Programming Languages

Stefan D. Bruda

CS 403, Fall 2025

HISTORY OF PROGRAMMING LANGUAGES

“Prehistory”
The 1940s: von Neumann and Zuse
The 1950s: The first programming language
The 1960s: An explosion in programming languages
The 1970s: Simplicity, abstraction, study
The 1980s: Consolidation and new directions
The 1990s: The explosion of the World Wide Web
The 21st century

A Brief (and Pretty Incomplete) History of Programming Languages (S. D. Bruda) CS 403, Fall 2025 1 / 21

PREHYSTORY

Cuneiform writing used in the Babylon, founded by Hammurabi around
1790 BC

poems, stories, contracts, records, astronomy, math

Famous Babylonian math
tablet (Plimpton 322)
involving Pythagorean
triples, a2 + b2 = c2 – with
a mistake! (or bug)

Weird math (base 60!)
two characters to express a (base-60) digit
decimal point not specified (must be figured out from context)

A Brief (and Pretty Incomplete) History of Programming Languages (S. D. Bruda) CS 403, Fall 2025 2 / 21

WRITTEN LANGUAGE TO DESCRIBE COMPUTATIONAL

PROCEDURES

A cistern.
The length equals the height.
A certain volume of dirt has been excavated.
The cross-sectional area plus this volume comes to 110.
The length is 30. What is the width?
You should multiply the length, 30, by . . .

— Translation by Donald Knuth

No variables
Instead, numbers serve as a running example of the procedure being
described

“This is the procedure”

Programming is among the earliest uses to which written language was
put

Programming languages design has tried to get as close to that as possible
from the very beginning. . .

A Brief (and Pretty Incomplete) History of Programming Languages (S. D. Bruda) CS 403, Fall 2025 3 / 21

ALGORITHMS

Abū ’Abdallāh Muh.ammad ibn Mūsā al-Khwārizmı̄, or Mohammed
Al-Khorezmi for short (Baghdad, 780–850)

One little book: “The Compendious Book on Calculation by Completion and
Balancing”

Compilation and extension of known rules for solving quadratic equations and
other problems
Used as a mathematics text in Europe for eight hundred years

The book is considered the foundation of algebra
Invention of the notions of algorithms and data structures

Earlier algorithms:
Euclid (300 BC): an algorithm for computing the GCD of two numbers
Eratosthenes (about same time): one of the most efficient algorithms for
finding small primes (the sieve of Eratosthenes)

Alexander de Villa Dei (1220): Canto de Algorismo = algorithms in Latin
verse
Natural language (even poetry!) plus math rather than programming
languages

A Brief (and Pretty Incomplete) History of Programming Languages (S. D. Bruda) CS 403, Fall 2025 4 / 21

THE FIRST PROGRAMMING ENVIRONMENTS

Jacquard loom (early 1800s) translated
card patterns into cloth designs
Charles Babbage’s Analytical Engine
(1830s & 40s)

First programmer: Augusta Ada King,
Countess of Lovelace (today commonly
known as Ada Lovelace)

The engine can arrange and combine
its numerical quantities exactly as if they
were letters or any other general symbols;
and in fact might bring out its results in al-
gebraic notation, were provision made.

Programs were punched cards containing
data and operations

A Brief (and Pretty Incomplete) History of Programming Languages (S. D. Bruda) CS 403, Fall 2025 5 / 21

THE 1940S: VON NEUMANN AND ZUSE

Harvard Mark I (1943) – Howard Aiken (IBM), Grace Hopper (Navy) →
first electro-mechanical computer

Harvard Mark II: First computer bug

ENIAC (1946) – Presper Eckert, John Mauchly (U. Penn.) → First
electronic computer
Programming was manual, with switches and cables
John von Neumann led a team that built computers with stored programs
and a central processing unit (as we know them today)
Konrad Zuse designed the first programming language as we know it
(Plankalkul = program calculus)

In Germany, in isolation because of the war; work finally published in 1972
Advanced data type features: floating point, arrays, records
Invariants for correctness
Rather cumbersome notation

A[7] := 5 × B[6] →
5 ∗ B ⇒ A

V 6 7 (subscripts)
S 1.n 1.n (data types)

Never implemented

A Brief (and Pretty Incomplete) History of Programming Languages (S. D. Bruda) CS 403, Fall 2025 6 / 21

THE FIRST COMPUTER BUG!

A Brief (and Pretty Incomplete) History of Programming Languages (S. D. Bruda) CS 403, Fall 2025 7 / 21

THE 1950S: THE FIRST PROGRAMMING LANGUAGES

FORTRAN (1957, John Backus)
FORmula TRANslator – designed for scientific programming
Many new features over time: FORTRAN II, FORTRAN IV, FORTRAN 66,
FORTRAN 77 (structured programs, char’s), Fortran 90 (arrays, modules),
Fortran 2003 (objects), Fortran 2008 (concurrent programming)
Very efficient compilation into fast machine code

COBOL (1960, Adm. Grace Hopper)
Mathematical programs should be written in mathematical notation,
data processing programs should be written in English statements —
G. Hopper, 1953

Committee sponsored by US Department of Defence
Biggest contribution was the idea that programs should be written in a way
that is easily understood
Adopted widely by businesses for record-keeping applications
Record structure, separation of data from execution part, versatile formatting
of output using “pictures”
ANSI standards (1968, 1974, 1985)

A Brief (and Pretty Incomplete) History of Programming Languages (S. D. Bruda) CS 403, Fall 2025 8 / 21

FORTRAN EXAMPLE

IMPLICIT INTEGER (A-Z)

DIMENSION ORD(N),POPLST(2,20)

INTEGER X,XX,Z,ZZ,Y

INTEGER A(N)

NDEEP=0

U1=N

L1=1

DO 1 I=1,N

1 ORD(I)=I

2 IF (U1.LE.L1) RETURN

3 L=L1

U=U1

4 P=L

Q=U

X=A(ORD(P))

Z=A(ORD(Q))

IF (X.LE.Z) GO TO 5

5

A Brief (and Pretty Incomplete) History of Programming Languages (S. D. Bruda) CS 403, Fall 2025 9 / 21

COBOL EXAMPLE

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. IBM-4381.

OBJECT-COMPUTER. IBM-4381.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 INPUT-FIELD.

05 INPUT-VALUE PIC 99 VALUE ZERO.

01 CALCULATION-FIELD.

05 SUM-VALUE PIC 9(03) VALUE ZERO.

05 AVERAGE-VALUE PIC 9(03)V99 VALUE ZERO.

01 OUTPUT-FIELD.

05 EDIT-FIELD PIC ZZ9.99 VALUE ZERO.

PROCEDURE DIVISION.

1000-MAIN.

PERFORM 2000-INPUT-ADD 10 TIMES.

DIVIDE 10 INTO SUM-VALUE GIVING AVERAGE-VALUE.

2000-INPUT-ADD. ...

A Brief (and Pretty Incomplete) History of Programming Languages (S. D. Bruda) CS 403, Fall 2025 10 / 21

THE 1950S: THE FIRST LANGUAGES (CONT’D)

Algol 60
General, expressive language; most current imperatives are derivatives
Introduced many modern concepts

structured programming reserved keywords type declarations
recursion stack call-by-value
user defined types free-format dynamic arrays

Stack-based run time environment
Great success and also great failure (ahead of its time, too complex, lack of
I/O, lack of support from IBM) → entrenchment of Fortran

LISP (John McCarthy, MIT)
LISt Processing → the main data structure is the (singly linked) list
Untyped, messy language, but good for problems we solve by trial and error
(quick prototyping) → used in the past in many AI applications
Historically inefficient on Von Neumann machines
Main processing unit: the recursive function → influenced the modern
functional languages such as ML, Miranda, Haskell
Contemporary variants include Common Lisp, Scheme, Emacs Lisp

A Brief (and Pretty Incomplete) History of Programming Languages (S. D. Bruda) CS 403, Fall 2025 11 / 21

ALGOL EXAMPLE

procedure Absmax(a) Size:(n, m) Result:(y) Subscripts:(i, k);

value n, m;

array a;

integer n, m, i, k;

real y;

comment The absolute greatest element of the matrix a, of size

n by m is transferred to y, and the subscripts of this element

to i and k;

begin

integer p, q;

y := 0; i := k := 1;

for p:=1 step 1 until n do

for q:=1 step 1 until m do

if abs(a[p, q]) > y then

begin y := abs(a[p, q]);

i := p; k := q

end

end Absmax

A Brief (and Pretty Incomplete) History of Programming Languages (S. D. Bruda) CS 403, Fall 2025 12 / 21

LISP EXAMPLE

(defun mapcar (fun list)

"Applies FUN on every element of LIST and returns the

list of results (iterative version)."

(let ((results nil))

(dolist (x list)

(setq results (cons (apply #’fun x) results)))

(reverse results)))

(defun mapcar (fun list)

"Applies FUN on every element of LIST and returns the

list of results (recursive version)."

(cons (apply #’fun (car list))

(mapcar fun (cdr list))))

A Brief (and Pretty Incomplete) History of Programming Languages (S. D. Bruda) CS 403, Fall 2025 13 / 21

THE 1960S: AN EXPLOSION IN LANGUAGES

Hundreds of languages were developed

PL/1 (1964)
Combined features of FORTRAN, COBOL, Algol 60 and more!
Translators were slow, huge, and unreliable
Some say it was ahead of its time. . .

Algol 68 → still ahead of its time!
Simula (or what would be called today Object-oriented Algol)
BASIC
etc.

A Brief (and Pretty Incomplete) History of Programming Languages (S. D. Bruda) CS 403, Fall 2025 14 / 21

THE 1970S: SIMPLICITY, ABSTRACTION, STUDY

Algol-W then Pascal (Nicklaus Wirth and C.A.R.Hoare) → small, simple,
efficient (reaction against the 60s), ideal for teaching
C (Dennis Ritchie)

Constructed as a portable assembler to build Unix for various architectures
But also has modern features (structured programming, data structures, etc.)
The primary API for Unix (Mac OS, Linux, etc.) is still C!

Euclid (University of Toronto, 1977)
Main goal → formal program verification
extends Pascal to include abstract data types

Scheme (1978, MIT) → simplified, cleaner Lisp

A Brief (and Pretty Incomplete) History of Programming Languages (S. D. Bruda) CS 403, Fall 2025 15 / 21

C EXAMPLE

#include <stdio.h>

main(t,_,a)

char*a;

{return!0<t?t<3?

main(-79,-13,a+

main(-87,1-_,

main(-86, 0, a+1)

+a)):

1,

t<_?

main(t+1, _, a)

:3,

main (-94, -27+t, a)

&&t == 2 ?_

<13 ?

main (2, _+1, "%s %d %d\n")

:9:16:

t<0?

t<-72?

main(_, t,

"@n’+,#’/*{}w+/w#cdnr/+,{}r/*de}+,/*{*+,/w{%+,/w#q#n+,/#{l,+,/n{n+,/+#n+,/#;\

#q#n+,/+k#;*+,/’r :’d*’3,}{w+K w’K:’+}e#’;dq#’l q#’+d’K#!/+k#;\

q#’r}eKK#}w’r}eKK{nl]’/#;#q#n’){)#}w’){){nl]’/+#n’;d}rw’ i;#){nl]!/n{n#’; \

r{#w’r nc{nl]’/#{l,+’K {rw’ iK{;[{nl]’/w#q#\

\

n’wk nw’ iwk{KK{nl]!/w{%’l##w#’ i; :{nl]’/*{q#’ld;r’}{nlwb!/*de}’c ;;\

{nl’-{}rw]’/+,}##’*}#nc,’,#nw]’/+kd’+e}+;\

#’rdq#w! nr’/ ’) }+}{rl#’{n’ ’)# }’+}##(!!/")

:

t<-50?

_==*a ?

putchar(31[a]):

main(-65,_,a+1)

:

main((*a == ’/’) + t, _, a + 1)

:

0<t?

main (2, 2 , "%s")

:*a==’/’||

main(0,

main(-61,*a, "!ek;dc i@bK’(q)-[w]*%n+r3#l,{}:\nuwloca-O;m .vpbks,fxntdCeghiry")

,a+1);}

A Brief (and Pretty Incomplete) History of Programming Languages (S. D. Bruda) CS 403, Fall 2025 16 / 21

THE 1980S: CONSOLIDATION & NEW DIRECTIONS

ML → mostly functional language (like Lisp) with cleaner (math-like)
syntax
Prolog (Université Aix Marseille)

PROgrammation en LOGique / PROgramming in LOGic → describes the
problem at hand as known facts and inference rules
Notable industrial uses: IBM Watson, Apache UIMA, and the. . . Buran space
plane

Objects ’r’ Us:
Smalltalk → the purest example of object-oriented language
C++ → extend a popular language (C) with strongly typed object system
Eiffel → object-oriented Pascal

A Brief (and Pretty Incomplete) History of Programming Languages (S. D. Bruda) CS 403, Fall 2025 17 / 21

THE 1990S AND 200S

1990s
Java → eliminate the non-object-oriented features of C++
Haskell → purely functional programming language
quicksort [] = []

quicksort (x:xs) = quicksort [y|x <- xs, y < x] ++ [x] ++

quicksort [y|x <- xs, y >= x]

2000s
Multi-paradigm language (procedural, object-oriented, functional, etc.)

First mainstream such a language: Python
Languages for the Web

Java applets
Languages within Web pages (PHP, server-side includes)

Emphasis on cross-platform development
Develop on PC, run on cell phones, game consoles, and toasters

A Brief (and Pretty Incomplete) History of Programming Languages (S. D. Bruda) CS 403, Fall 2025 18 / 21

WHERE ARE WE NOW

Computing devices are ubiquitous, and so is the Internet and Web
C and C++ are the most widely used system programming languages
Java had peaked. . . and then came Android
Most students learn C / C++ or Java
Web 2.0 programming (PHP, etc.)
COBOL and Java are used for business applications
Fortran is the main language on supercomputers

We already have Object-Oriented Fortran!
C++ is growing

Several non-mainstream (but cleaner) languages rising (Ruby, Python,
Haskell) → but who knows what the future has in store

Object-Oriented COBOL?

A Brief (and Pretty Incomplete) History of Programming Languages (S. D. Bruda) CS 403, Fall 2025 19 / 21

CHRONOLOGY

Algol 60

PL/1

Smalltalk

C++

Java

1960

Fortran

Simula

1970

Ada

Clu

Oberon

Eiffel

1980

Lisp

ML

Miranda

Haskell

Scheme

1990

Snobol 4

Prolog

ICON

C

Algol 68

Modula 2

Pascal

APLCOBOL

A Brief (and Pretty Incomplete) History of Programming Languages (S. D. Bruda) CS 403, Fall 2025 20 / 21

BRAINF**K

A Brainf**k program has an implicit byte pointer, called “the pointer”,
which is free to move around within an array of 30,000 bytes, initially all
set to zero
The pointer is initialized to point to the beginning of this array
The Brainf**k programming language consists of eight commands, each
of which is represented as a single character
> Increment the pointer
< Decrement the pointer
+ Increment the byte at the pointer
- Decrement the byte at the pointer
. Output the byte at the pointer
, Input a byte and store it in the byte at the pointer
[Jump past the matching] if the byte at the pointer is zero
] Jump to the matching [

>+++++++++[<++++++++>-]<.>+++++++[<++++>-]<+.+++++++..++

+.[-]>++++++++[<++++>-] <.#>+++++++++++[<+++++>-]<.>+++

+++++[<+++>-]<.+++.------.--------.[-]>++++++++ [<++++

>-]<+.[-]++++++++++.

A Brief (and Pretty Incomplete) History of Programming Languages (S. D. Bruda) CS 403, Fall 2025 21 / 21

