(program) == (block)
(block) == { (decls) (stmts) }
(decls) == (decls) (decl) | ¢
(decl)y == (type) ID;

(type) == (type) [NUM] | BASIC

(stmts) = (stmts) (stmt) | ¢

(stmt) == (loc) = (bool) ;
| IF ((bool)) (stmt)
| IF ((bool)) (stmt) ELSE (stmt)
| WHILE ((bool)) (stmt)
| (block)

(loc) == (loc)[(booly] | 1ID
(bool) = (bool) Il (join) | (join)
(join) == (join) && (equality) | (equality)

(equality) == (equality) == (rel)
| (equality) !'= (rel)
| (rel)

(rel) == (expr) < (expr)

| lexpr) <= (expr)
| lexpr) >= {expr)
| lexpr) > expr)
| expr)

(expr) == (expr) + (term)
| (expr) - (term)
| (term)

(term) == (term) * (unary)
| (term) / (unary)
| (unary)

(unary) == ! (unary)
| - {unary)
| (factor)
(factor) == ((bool))
| (loc)
| NUM
| REAL
| TRUE
| FALSE

Figure 1: A grammar for a simple programming language.

(program

(type
(typecl
(stmts
(stmt

)
)
)
)
)
)
)
)

(equality
(equalitycl

(rel)
(reltail)

(expr)
(expcl)

(term)
(termcl)

(unary)

(factor)

(block)

{ (decls) (stmts) }

e | (decl) (decls)

(type) ID;

BASIC (typecl)

e | [NUM] (typecl)

e | (stmt) (stmts)

(loc) = (bool) ; | IF ((bool)) (stmt)
IF ((bool)) (stmt) ELSE (stmt)
WHILE ((bool)) (stmt)

(block)

ID (loccl)

e | [<b001>] (loccl)
(bool) || (join) | (join)
(equality) (joincl)

e | && (equality) (joincl)
(rel) (equalitycl)

= (rel) (equalitycl)
1= (rel) (equalitycl)
(expr) (reltail)
| < {expr)

term) (exprcl)

(
(term) (expel)

unary) (termcl)

(unary) (termcl)
(unary) (termcl)
! (unary)
- (unary)
(factor)
((bool))
(loc)

NUM

REAL
TRUE
FALSE

—*M/\|

Figure 2: A modified grammar suitable for recursive descent parsing.

