CS 403: PoPL

CS 403: Principles of Programming Languages

@ Several subjects:

@ An introduction to functional programming using Haskell
An introduction to logic programming using Prolog
Formal description of programming languages

The compilation process (recursive descent)

A more in-depth look at the procedural paradigm

Stefan D. Bruda

Fall 2024

CS 403: Introduction (S. D. Bruda) Fall 2024 1/9

INTRODUCTION INTRODUCTION (CONT’D)

Why are there so many programming languages?
@ Evolution = we’ve learned better ways of doin things over time
@ Socio-economic factors: proprietary interests, commercial advantage
@ Orientation toward special purposes
@ Orientation toward special hardware

Why do we have programming languages?
@ Because writing machine code is painful
What is a language for?

@ Way of thinking — way of expressing algorithms
o Languages from the user’s point of view

@ Diverse ideas about what is pleasant to use @ Abstraction of virtual machine — way of specifying what you want
@ Hardware limitations (historical) o Tell the hardware what to do without getting down to bits
What makes a language successful? e Languages from the implementor’s point of view

o Easy to learn (BASIC, Pascal, LOGO, Scheme) Why study programming languages? _ _

o Easy to express things, easy use once fluent, “powerful” (C++, Common @ Make it easier to learn new languages (and programming techniques)
Lisp, APL, Algol-68, Perl, Python) @ Some languages are similar; easy to walk down a family tree

o Easy to implement (C, BASIC, Forth) @ Understand implementation rationales and costs
Possible t ile t ’ ’ d (fast/ I de (Fort o Choose between alternative ways of doing things, based on knowledge of

° oss! e to compile to very good (fast/small) code (o.r ran) . what will happen underneath

@ Backing of a powerful sponsor (COBOL, PL/1, Ada, Visual Basic) @ Gain a deeper understanding of the overall concept of programming

@ Wide dissemination at minimal cost (Pascal, Turing, Java)

CS 403: Introduction (S. D. Bruda) Fall 2024 2/9 CS 403: Introduction (S. D. Bruda) Fall 2024 3/9

PROGRAMMING LANGUAGE CLASSIFICATION - | COMPILATION AND INTERPRETATION

No complier = no programmming language!

@ Pure compilation: The compiler translates the high-level source program
into an equivalent target program (typically in machine language), then
Programming languages are grouped as follows: goes away:

° Imperatlve Source program Target program

@ von Neumann — Fortran, Pascal, Basic, C

o Object oriented — Smalltalk, Eiffel, Java, C++ Input Output
@ Scripting languages — Perl, Python, JavaScript, PHP

@ Declarative @ Pure interpretation: The interpreter stays around for the execution of the
e Functional — Haskell, ML, (somehow: Scheme, Common Lisp) program
o Logic & constraint-based — Prolog, VisiCalc, RPG o The interpreter becomes the locus of control during execution

Source program

Input

@ Interpretation offers greater flexibility and better diagnostics, but
compilation offers better performance

CS 403: Introduction (S. D. Bruda) Fall 2024 4/9 CS 403: Introduction (S. D. Bruda) Fall 2024 5/9

COMPILATION AND INTERPRETATION (CONT’D) COMPILATION WORKFLOW

@ A common case is compilation or simple pre-processing, followed by @ For languages that compile to executable code:
interpretation Source code

o Many language implementations include a mixture of compilation and
interpretation
Source program Intermediate program Modified source code

Intermediate program
Output Assembly language
Object code Libraries

@ Compilation does not have to produce machine language for some

hardware

o Compilation = translation from one language into another
@ Some compilers produce nothing but virtual instructions (Pascal P-code,
Java byte code, Microsoft COM+) @ For languages that run on a virtual machine: the assembler and linker
@ Compilation possibly preceded by a preprocessor part are replaced by an interpreter (or virtual machine)

Executable code

CS 403: Introduction (S. D. Bruda) Fall 2024 6/9 CS 403: Introduction (S. D. Bruda) Fall 2024 7/9

PHASES OF COMPILATION

PHASES OF COMPILATION (CONT’D)

@ Scanner: divides program into
“tokens” (smallest meaningful
units)

o Driven by regular expressions
Parser: discovers the syntactic
structure of a program

o Driven by context-free grammar
@ Semantic analysis: discovers the
meaning of the program

o Static analysis

Character stream

Scanner (lexical analysis)

|

Token stream

Parser (syntax analysis)

Parse tree

Abstract syntax tree

jntermediate code optimization

Modified intermediate form @ Some other things can only be

figured out at run time

Target language @ Intermediate form: tree-like

structure and/or some

Modified target language machine-like Iang uage (bUt

N

machine independent)

e Often a form of machine
language, but for an idealized
machine

CS 403: Introduction (S. D. Bruda) Fall 2024 8/9

@ Intermediate code optimization: produce code that does the same thing,
only faster
o Algorithmic optimization
@ Code generation: produces assembly language for the target machine
@ Code optimization: machine-specific optimizations (use of special
instructions or addressing modes, reorder instruction to improve the load
on superscallar architectures, etc.)

@ Symbol table: all phases rely on a symbol table that keeps track of all the
identifiers in the program and what the compiler knows about them
o This symbol table may be retained (in some form) even after compilation has
completed, for use by a debugger

CS 403: Introduction (S. D. Bruda) Fall 2024 9/9

