
Mathematical models of computation

Stefan D. Bruda

CS 403, Fall 2024

TURING MACHINES

Finite state control (program) + storage
An infinite tape used as storage and also
input

The head scans the tape, can read the
current cell, can overwrite the current cell,
or can move left or right

Formally, M “ pK ,Σ, δ, s,hq

...

1
2

3

4

...

... ...Input + storage

Finite set of states K , tape alphabet Σ
Special halt state h R K and blank symbol # P Σ

δ : K ˆ Σ Ñ pK Y {h}q ˆ pΣ Y {L,R}q
Configuration: K ˆ Σ˚ ˆ pΣ˚pΣz{#}q Y {ε}q, commonly written pq,waw 1q
Yields in one step:

pq1,wauq $M pq2,wbuq iff δpq1, aq “ pq2, bq, b P Σ
pq1,wabuq $M pq2,wabuq iff δpq1, aq “ pq2,Rq
pq1,wbauq $M pq2,wbauq iff δpq1, aq “ pq2, Lq

Yields: $˚
M , the reflexive and transitive closure of $M

M computes f : Σ˚ Ñ Σ˚ iff ps,#w#q $˚
M ph,#f pwq#q

Computation of a Turing machine = sequence of configurations
CS 403 (S. D. Bruda) CS 403, Fall 2024 1 / 20

THE RANDOM ACCESS MACHINE

The Random Access Machine (RAM) consists of an unbounded set of
registers Ri , i ě 0, one register PC, and a control unit

The size (i.e. the number of bits) of a register is log n for an input of size n

The control unit executes a program consisting of a sequence of
numbered statements

In each computation step the RAM executes one statement of the program;
the execution start with the first statement
The register PC specifies the number of the statement that is to be executed
The program halts when the program counter takes an invalid value (i.e.
there is no statement with the specified number in the program)

To “run” a RAM we need to
Specify a program
Define an initial values for the registers Ri , 0 ď i ă n (input)
The output is the content of the registers upon halting

CS 403 (S. D. Bruda) CS 403, Fall 2024 2 / 20

RAM STATEMENTS

Statement Effect on registers Program counter
Ri Ð Rj Ri :“ Rj PC :“ PC ` 1
Ri Ð RrRj s Ri :“ RRj PC :“ PC ` 1
RrRj s Ð Ri RRj :“ Ri PC :“ PC ` 1
Ri Ð k Ri :“ k PC :“ PC ` 1
Ri Ð Rj ` Rk Ri :“ Rj ` Rk PC :“ PC ` 1
Ri Ð Rj ´ Rk Ri :“ max{0,Rj ´ Rk} PC :“ PC ` 1
GOTO m PC :“ m

IF Ri “ 0 GOTO m PC :“
{

m if Ri “ 0
PC ` 1 otherwise

IF Ri ą 0 GOTO m PC :“
{

m ifRi ą 0
PC ` 1 otherwise

Customary extensions:
Named registers (or variables), even arrays and structures
All the usual arithmetic operations (multiplication, division, shift, etc.)
Structured control statements (if-then-else statements, while loops, etc.)

CS 403 (S. D. Bruda) CS 403, Fall 2024 3 / 20

DESCRIBING COMPUTATIONS

The Turing machine and the RAM are equivalent to each other within
polynomial speedup/slowdown

These plus a lot of other models of computation (the Church-Turing thesis)
So it makes a lot of sense to use the RAM to express and analyze algorithms

These two models are used for completely different purposes
Turing machines are used to analyze problems (“what would be the
common properties of all the Turing machines that solve this problem”)
and then to classify problems into classes (solvable, unsolvable, easy,
hard, . . .)
When a philosophical question about mechanical computation is to be
answered the most common model used for such an answer is the Turing
machine
The RAM programming language is pseudocode and is the golden
standard for describing algorithms
The Turing machine/RAM constitute the mathematical model of
imperative programming

CS 403 (S. D. Bruda) CS 403, Fall 2024 4 / 20

THE LAMBDA NOTATION

Recall that a Haskell function accepts one argument and returns one
result

peanuts Ñ chocolate-covered peanuts
raisins Ñ chocolate-covered raisins
ants Ñ chocolate-covered ants

Using the lambda calculus, a general “chocolate-covering” function (or
rather λ-expression) is described as follows:

λx .chocolate-covered x

Then we can get chocolate-covered ants by applying this function:
(λx .chocolate-covered x) ants Ñ chocolate-covered ants

CS 403 (S. D. Bruda) CS 403, Fall 2024 5 / 20

THE LAMBDA NOTATION (CONT’D)

A general covering function:

λy .λx .y -covered x

The result of the application of such a function is itself a function:

(λy .λx .y -covered x) caramel Ñ λx .caramel-covered x

((λy .λx .y -covered x) caramel) ants Ñ (λx .caramel-covered x) ants
Ñ caramel-covered ants

Functions can also be parameters to other functions:

λf .(f) ants

((λf .(f) ants) λx .chocolate-covered) x
Ñ (λx .chocolate-covered x) ants
Ñ chocolate-covered ants

CS 403 (S. D. Bruda) CS 403, Fall 2024 6 / 20

THE LAMBDA CALCULUS

The lambda calculus is a formal system designed to investigate function
definition, function application and recursion

Introduced by Alonzo Church and Stephen Kleene in the 1930s

We start with a countable set of identifiers, e.g.,
{a,b, c, . . . , x , y , z, x1, x2, . . .} and we build expressions using the
following rules:

LEXPRESSION Ñ IDENTIFIER
LEXPRESSION Ñ λIDENTIFIER.LEXPRESSION (abstraction)
LEXPRESSION Ñ pLEXPRESSIONqLEXPRESSION (combination)
LEXPRESSION Ñ pLEXPRESSIONq

In an expression λx .E , x is called a bound variable; a variable that is not
bound is a free variable

Syntactical sugar: Normally, no literal constants exist in lambda calculus.
We use, however, literals for clarity

Further sugar: HASKELL
The lambda calculus is the mathematical model of functional programming

CS 403 (S. D. Bruda) CS 403, Fall 2024 7 / 20

REDUCTIONS

In lambda calculus, an expression pλx .EqF can be reduced to ErF{xs
ErF{xs stands for the expression E , where F is substituted for all the bound
occurrences of x

In fact, there are three reduction rules:
α: λx .E reduces to λy .Ery{xs if y is not free in E (change of variable)
β: pλx .EqF reduces to ErF{xs (functional application)
γ: λx .pFxq reduces to F if x is not free in F (extensionality)

The purpose in life of a Haskell program, given some expression, is to
repeatedly apply these reduction rules in order to bring that expression to
its “irreducible” form or normal form

CS 403 (S. D. Bruda) CS 403, Fall 2024 8 / 20

HASKELL AND THE LAMBDA CALCULUS

In a Haskell program, we write functions and then apply them
Haskell programs are nothing more than collections of λ-expressions, with
added sugar for convenience (and diabetes)

We write a Haskell program by writing λ-expressions and giving names to
them:

succ x = x + 1

length = foldr onepl 0

where onepl x n = 1+n

Main> succ 10

11

succ = \ x -> x + 1

length = foldr (\ x -> \ n -> 1+n) 0

-- shorthand: (\ x n -> 1+n)

Main> (\ x -> x + 1) 10

11

Another example: map (\ x -> x+1) [1,2,3] maps (i.e., applies) the
λ-expression λx .x ` 1 to all the elements of the list, thus producing
[2,3,4]

In general, for some expression E , λx .E (in Haskell-speak: \ x -> E)
denotes the function that maps x to the (value of) E

CS 403 (S. D. Bruda) CS 403, Fall 2024 9 / 20

MULTIPLE REDUCTIONS

More than one order of reduction is usually possible in lambda calculus
(and thus in Haskell, at least in theory):
square :: Integer -> Integer

square x = x * x

smaller :: (Integer, Integer) -> Integer

smaller (x,y) = if x<=y then x else y

square psmaller p5, 78qq
ñ pdef. smallerq

square 5
ñ pdef. squareq

5ˆ 5
ñ pdef. ˆq

25

square psmaller p5, 78qq
ñ pdef. squareq

psmaller p5, 78qq ˆ psmaller p5, 78qq
ñ pdef. smallerq

5ˆ psmaller p5, 78qq
ñ pdef. smallerq

5ˆ 5
ñ pdef. ˆq

25

CS 403 (S. D. Bruda) CS 403, Fall 2024 10 / 20

MULTIPLE REDUCTIONS (CONT’D)

Sometimes it even matters:
three :: Integer -> Integer

three x = 3

infty :: Integer

infty = infty + 1

three infty
ñ pdef. inftyq

three pinfty ` 1q
ñ pdef. inftyq

three ppinfty ` 1q ` 1q
ñ pdef. inftyq

three pppinfty ` 1q ` 1q ` 1q
...

three infty
ñ pdef. threeq

3

CS 403 (S. D. Bruda) CS 403, Fall 2024 11 / 20

LAZY HASKELL

Haskell uses the second variant, called lazy evaluation (normal order,
outermost reduction), as opposed to eager evaluation (applicative order,
innermost reduction):
Main> three infty

3

Why is good to be lazy:
Doesn’t hurt: If an irreducible form can be obtained by both kinds of
reduction, then the results are guaranteed to be the same
More robust: If an irreducible form can be obtained, then lazy evaluation is
guaranteed to obtain it
Even useful: It is sometimes useful (and, given the lazy evaluation, possible)
to work with infinite objects

CS 403 (S. D. Bruda) CS 403, Fall 2024 12 / 20

INFINITE OBJECTS

[1 .. 100] produces the list of numbers between 1 and 100, but what is
produced by [1 ..]?

Prelude> [1 ..] !! 10

11

Prelude> [1 ..] !! 12345

12346

Prelude> zip [’a’ .. ’g’] [1 ..]

[(’a’,1),(’b’,2),(’c’,3),(’d’,4),(’e’,5),(’f’,6),(’g’,7)]

A stream of prime numbers:
primes :: [Integer]

primes = sieve [2 ..]

where sieve (x:xs) = x : [n | n <- sieve xs, mod n x /= 0]

-- alternative definition:

-- sieve (x:xs) = x : sieve (filter (\ n -> mod n x /= 0) xs)

Main> take 20 primes

[2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71]

CS 403 (S. D. Bruda) CS 403, Fall 2024 13 / 20

MEMO FUNCTIONS

Streams can also be used to improve efficiency (dramatically!)
Take the Fibonacci numbers:
fib :: Integer -> Integer

fib 0 = 1

fib 1 = 1

fib n = fib (n - 1) + fib (n - 2)

Complexity? Op2nq
Now take them again, using a memo stream:
fastfib :: Integer -> Integer

fastfib n = fibList %% n

where fibList = 1 : 1 : zipWith (+) fibList (tail fibList)

(x:xs) %% 0 = x

(x:xs) %% n = xs %% (n - 1)

Complexity? Opnq
Typical application: dynamic programming

CS 403 (S. D. Bruda) CS 403, Fall 2024 14 / 20

KNOWLEDGE REPRESENTATION

A proposition is a logical statement that can be either false or true
To reason about and with propositions one needs a formal system i.e., a
symbolic logic
Predicate calculus or first-order logic is one such a logic

A term is a constant, structure, or variable
An atomic proposition (or predicate) denotes a relation. It is composed of a
functor that names the relation, and an ordered list of terms (parameters):

secureproomq, likespbob, steakq, blackpcrowq, capitalpontario, torontoq
Variables can appear only as arguments. They are free:

capitalpontario,X q
unless bounded by one of the quantifiers @ and D:

DX : capitalpontario,X q @Y : capitalpY , torontoq
A compound proposition (formula) is composed of atomic propositions,
connected by logical operators: ␣, ^, _, Ñ; all variables are bound using
quantifires

@X .pcrowpX q Ñ blackpX qq
DX .pcrowpX q ^ whitepX qq

@X .pdogpfidoq ^ pdogpX q Ñ smellypX qq Ñ smellypfidoqq
CS 403 (S. D. Bruda) CS 403, Fall 2024 15 / 20

SEMANTICS OF THE PREDICATE CALCULUS

The meaning is in the eye of the beholder
Sentences are true with respect to a model and an interpretation

The model contains objects and relations among them (your view of the
world)
An interpretation is a triple I “ pD, ϕ, πq, where

D (the domain) is a nonempty set; elements of D are individuals
ϕ is a mapping that assigns to each constant an element of D
π is a mapping that assigns to each predicate with n arguments a function
p : Dn Ñ {True,False} and to each function of k arguments a function
f : Dk Ñ D

The interpretation specifies the following correspondences:
constant symbols Ñ objects (individuals)
predicate symbols Ñ relations
function symbols Ñ functional relations

An atomic sentence predicatepterm1, . . . , termnq is true iff the objects referred to
by term1, . . . , termn are in the relation referred to by predicate

CS 403 (S. D. Bruda) CS 403, Fall 2024 16 / 20

SEMANTICS OF THE PREDICATE CALCULUS (CONT)

Objects (richard, kingJohn, leg1, leg2), predicates or relations (brother),
functions (leftLegOf)

The predicate calculus is the mathematical model of logic programming

CS 403 (S. D. Bruda) CS 403, Fall 2024 17 / 20

PREDICATE CALCULUS PROOFS

Inference rules Ñ sound generation of new sentences from old
Most general inference rule: resolution
Most used in practice: generalized modus ponens

α1, . . . , αn α1 ^ ¨ ¨ ¨ ^ αn ñ β

β
(modus ponens)

α1, . . . , αn

α1
1 ^ ¨ ¨ ¨ ^ α1

n ñ β
Dσ : pα1qσ “ pα1

1qσ ^ ¨ ¨ ¨ ^ pαnqσ “ pα1
nqσ

βσ

(generalized
modus ponens)

Proof Ñ a sequence of applications of inference rules

CS 403 (S. D. Bruda) CS 403, Fall 2024 18 / 20

PROOF BY CONTRADICTION

For convenience (why?) unless otherwise stated all the variables are
henceforth universally quantified

KB
Bob is a buffalo 1. buffalopbobq
Pat is a pig 2. pigppatq
Buffaloes outrun pigs 3. buffalopX q ^ pigpY q ñ fasterpX ,Y q
Query
Is something outran
by something else? D U : D V : fasterpU,V q
Negated query: 4. fasterpU,V q ñ l

(1), (2), and (3) with
σ “ {X{bob,Y {pat} 5. fasterpbob,patq
(4) and (5) with
σ “ {U{bob,V {pat} l

All the substitutions regarding variables appearing in the query are
typically reported (why?)

CS 403 (S. D. Bruda) CS 403, Fall 2024 19 / 20

INFERENCE AND MULTIPLE SOLUTIONS

parent(ann,X) −>

5

1

6

5 5

2

3

{X/bob}

{A/ann, B/X}

{X/bob}

ancestor(ann,B) ancestor(B,X) −>

parent(ann,B) parent(B,X) −>

parent(cecil,X) −>

{X/dave}

{B/cecil}

{X/dave}

{A/ann, C/X}

ancestor(ann,X) −>

(1) parentpann,bobq
(2) parentpann, cecilq
(3) parentpcecil ,daveq
(4) parentpcecil ,ericq
(5) parentpA,Bq ñ ancestorpA,Bq
(6) ancestorpA,Bq ^ ancestorpB,Cq ñ ancestorpA,Cq

CS 403 (S. D. Bruda) CS 403, Fall 2024 20 / 20

