
Introduction to logic programming

Stefan D. Bruda

CS 403, Fall 2024

KNOWLEDGE REPRESENTATION IN PROLOG

Prolog is a logic/descriptive language
Allows the specification of the problem to be solved using

Known facts about the objects in the universe of the problem (unit clauses):
locked(window).

dark(window).

capital(ontario,toronto).

Rules for inferring new facts from the old ones
Queries or goals about objects and their properties

The system answers such queries, based on the existing facts and rules
?- locked(window).

No

?- [’test.pl’].

Yes

?- locked(window).

Yes

?- locked(door).

No

Introduction to logic programming (S. D. Bruda) CS 403, Fall 2024 1 / 35

CONSTANTS AND VARIABLES

A variable in Prolog is anything that starts with a capital letter or an
underscore (“ ”)
A constant is a number or atom. An atom is:

Anything that starts with a lower case letter followed by letters, digits, and
underscores
Any number of symbols +,-,*,/,\,~,<,>,=,’,^,:,.,?,@,#,$,$,&

Any of the special atoms [],{},!,;,%

Anything surrounded by single quotes: ’atom surrounded by quotes!.’

Escape sequence: just double the escaped character:
’insert ’’ in an atom’

NB: The predicate calculus is called first-order logic because no
predicate can take as argument another predicate, and no predicate can
be a variable

Introduction to logic programming (S. D. Bruda) CS 403, Fall 2024 2 / 35

PROLOG RULES AND INFERENCE

A Horn clause is a conjunction in which exactly one atomic proposition is
not negated

A ∨ ¬B ∨ ¬C ∨ ¬D
B ∧ C ∧ D → A

A sentence that contain exactly one atomic proposition is also a (degenerate
form of a) Horn clause
Note in passing that not all the FOL formulae can be converted into a set of
Horn clauses

A Prolog program is a set of Horn clauses
Therefore Prolog uses the generalized modus ponens as inference rule

Introduction to logic programming (S. D. Bruda) CS 403, Fall 2024 3 / 35

RULES

Natural Language:
The window is locked. If the light is off and the door is locked, the
room is secure. The light is off if the window is dark. The window is
dark.

Horn clauses:

locked(window)
dark(window)
off(light) ∧ locked(door) → secure(room)
dark(window) → off(light)

The Prolog program:
dark(window).

locked(window).

secure(room) :- off(light), locked(door).

off(light) :- dark(window).

Introduction to logic programming (S. D. Bruda) CS 403, Fall 2024 4 / 35

QUERIES

Now, one can ask something:
?- off(light).

Yes

?- secure(room).

No

?- locked(door).

No

?- locked(Something).

Something = window

Yes

?- locked(Something).

Something = window ;

No

Query variables are all existentially quantified

Introduction to logic programming (S. D. Bruda) CS 403, Fall 2024 5 / 35

CONJUNCTIVE RULES

A family tree:
parent(ann,bob). parent(ann,calvin).

parent(bob,dave). parent(dave,helen).

parent(ann,bob) parent(ann,calvin) parent(bob,dave) parent(dave,helen)

parent(X,Y)

Other family relations:
grandparent(X,Y) :- parent(X,Z), parent(Z,Y).

siblings(X,Y) :- parent(Z,X), parent(Z,Y) ., not(X = Y).

parent(X,Z)

grandparent(X,Y)

parent(Z,Y) parent(Z,X) parent(Z,Y) not (X = Y)

siblings(X,Y)

All the rule variables are universally quantified
Introduction to logic programming (S. D. Bruda) CS 403, Fall 2024 6 / 35

DISJUNCTIVE RULES

Yet another family relation:
ancestor(X,Y) :- parent(X,Y).

ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y).

ancestor(X,Y)

parent(X,Y) parent(X,Z) ancestor(Z,Y)

A person is happy if she is healthy, wealthy, or wise:
happy(Smb) :- person(Smb), healthy(Smb).

happy(Smb) :- person(Smb), wealthy(Smb).

happy(Smb) :- person(Smb), wise(Smb).

happy(Smb)

person(Smb)person(Smb) healthy(Smb) person(Smb) wealthy(Smb) wise(Smb)

Introduction to logic programming (S. D. Bruda) CS 403, Fall 2024 7 / 35

SEARCHING THE KNOWLEDGE BASE

parent(ann,calvin). 2 ?- trace(parent).

parent(ann,bob). parent/2: call redo exit fail

parent(bob,dave). Yes

parent(dave,helen). [debug] 3 ?- parent(ann,X).

T Call: (7) parent(ann, _G365)

T Exit: (7) parent(ann, calvin)

X = calvin ;

T Redo: (7) parent(ann, _G365)

T Exit: (7) parent(ann, bob)

X = bob ;

No

Fail

Call Exit

Redo

parent(ann,X)

X=calvin ;

X=bob ;
(2)

(1)

(1)

(2)

No

?− parent(ann,X).

Introduction to logic programming (S. D. Bruda) CS 403, Fall 2024 8 / 35

SEARCHING THE KNOWLEDGE BASE (CONT’D)

parent(ann,calvin). parent(ann,bob).

parent(bob,dave). parent(dave,helen).

grandparent(X,Y) :- parent(X,Z),parent(Z,Y).

[debug] 8 ?- grandparent(X,Y). T Redo: (8) parent(_G382, _L224)

T Call: (7) grandparent(_G382, _G383) T Exit: (8) parent(bob, dave)

T Call: (8) parent(_G382, _L224) T Call: (8) parent(dave, _G383)

T Exit: (8) parent(ann, calvin) T Exit: (8) parent(dave, helen)

T Call: (8) parent(calvin, _G383) T Exit: (7) grandparent(bob, helen)

T Fail: (8) parent(calvin, _G383)

T Redo: (8) parent(_G382, _L224) X = bob

T Exit: (8) parent(ann, bob) Y = helen ;

T Call: (8) parent(bob, _G383) T Redo: (8) parent(_G382, _L224)

T Exit: (8) parent(bob, dave) T Exit: (8) parent(dave, helen)

T Exit: (7) grandparent(ann, dave) T Call: (8) parent(helen, _G383)

T Fail: (8) parent(helen, _G383)

X = ann T Fail: (7) grandparent(_G382, _G383)

Y = dave ;

No

Introduction to logic programming (S. D. Bruda) CS 403, Fall 2024 9 / 35

SEARCHING THE KNOWLEDGE BASE (CONT’D)

Fail

Call Exit

Redo

parent(X,Z)

Fail

Call Exit

Redo

parent(Z,Y)

X/ann

Z/bob

callX/ann

Z/bob

exit

X/ann

Z/calvin

grandparent(X,Y)

parent(Z,Y)

X/ann

Z/calvin

call

redo

parent(X,Z)

parent(ann,bob)

call
exit

call

parent(bob,dave)

parent(dave,helen)

fail

X/ann

Z/bob

Z/dave

exit

X/ann

Z/calvin

X/ann

Z/bob

exit

call

exit

parent(ann,calvin)

Introduction to logic programming (S. D. Bruda) CS 403, Fall 2024 10 / 35

RECURSIVE PREDICATES

ancestor(X,Y) :- parent(X,Y).

ancestor(X,Y) :- parent(X,Z),ancestor(Z,Y).

A recursive call is treated as a brand new call, with all the variables
renamed

Fail

Call Exit

Redo

Fail

Call Exit

Redo

Fail

Call Exit

Redo

Fail

Call Exit

Redo

parent(X,Z) ancestor(Z,Y)

ancestor(X,Y)

ancestor(Z,Y)

parent(Z,Z1) ancestor(Z1,Y)

Introduction to logic programming (S. D. Bruda) CS 403, Fall 2024 11 / 35

UNIFICATION

There is no explicit assignment in Prolog
Bindings to variables are made through the process of unification, which
is done automatically most of the time

The predicate =/2 is used to request an explicit unification of its two
arguments
?- book(prolog,X) = book(Y,brna).

X = brna

Y = prolog

The binding {X/brna,Y/prolog} is the most general unifier
The most general unifier can contain free variables: the general unifier of
book(prolog,X) = book(Y,Z) is {Y/brna,X/Z}

even if {Y/prolog,X/brna,Z/brna} is also a unifier, it is not the most general

In passing, note that the following predicates are different, even if they
have the same name

tuple(1,2). % tuple/2 ?- tuple(X,Y).

tuple(1,2,3). % tuple/3 X = 1

tuple(a,b,c). % tuple/3 Y = 2 ;

tuple(a,b,c,d). % tuple/4 No

Introduction to logic programming (S. D. Bruda) CS 403, Fall 2024 12 / 35

UNIFICATION ALGORITHM

algorithm UNIFY(T1,T2,S) returns substitution or FAILURE:
Input: T1, T2: the structures to unify; S: the substitution representing the
variable bindings that are already in place

Initial call is typically made with an empty substitution: UNIFY(T1,T2, ∅)
Output: A new substitution (including S) or the special value FAILURE
specifying that the unification has failed

1 if T1 and T2 are both atoms, or bound to atoms in S and T1 == T2
then return S

2 if T1 is a free variable then return S ∪ {T1/T2}
3 if T2 is a free variable then return S ∪ {T2/T1}
4 if T1 == p(a1,a2, . . . ,an) and T2 == p(b1,b2, . . . ,bn)

(by themselves or because they are bound in S to such values) then
1 for i = 1 to n do

1 let A = UNIFY(ai , bi ,S), S = S ∪ A
2 if A == FAILURE then return FALURE

2 return S
5 return FAILURE

Introduction to logic programming (S. D. Bruda) CS 403, Fall 2024 13 / 35

UNIFICATION (CONT’D)

Unification can be attempted between any two Prolog entities. Unification
succeeds of fails. As a side effect, free variables may become bound
[debug] 10 ?- parent(ann,Y). [debug] 11 ?- parent(X,ann).

T Call: (7) parent(ann, _G371) T Call: (7) parent(_G370, ann)

T Exit: (7) parent(ann, calvin) T Fail: (7) parent(_G370, ann)

Y = calvin No

Yes

Once a variable is bound through some unification process, it cannot
become free again
[debug] 15 ?- X=1, X=2.

T Call: (7) _G340=1

T Exit: (7) 1=1

T Call: (7) 1=2

T Fail: (7) 1=2

No

Do not confuse =/2 with assignment!

Introduction to logic programming (S. D. Bruda) CS 403, Fall 2024 14 / 35

UNIFICATION AND STRUCTURES

What is the result of X = pair(1,2)?
?- X = pair(1,2).

X = pair(1, 2)

A structure has the same syntax as a predicate. The difference is that a
structure appears as a parameter
You do not have to define a structure, you just use it.

This is possible because of the unification process
Example: binary search trees
% if I found the element, then succeed.

member_tree(X,tree(X,L,R)).

% Otherwise, if my element is larger than the current key, then I

% search in the right child.

member_tree(X,tree(Y,L,R)) :- X > Y, member_tree(X,R).

% Eventually (otherwise) search in the left child.

member_tree(X,tree(Y,L,R)) :- X < Y, member_tree(X,L).

% An empty tree cannot contain any element, so anything else fails.

Introduction to logic programming (S. D. Bruda) CS 403, Fall 2024 15 / 35

SEARCH TREES (CONT’D)

?- member_tree(3,nil).

No

[debug] ?- member_tree(3,tree(2,tree(1,nil,nil),tree(3,nil,nil))).

T Call: (7) member_tree(3, tree(2, tree(1, nil, nil), tree(3, nil, nil)))

T Call: (8) member_tree(3, tree(3, nil, nil))

T Exit: (8) member_tree(3, tree(3, nil, nil))

T Exit: (7) member_tree(3, tree(2, tree(1, nil, nil),tree(3, nil, nil)))

Yes

[debug] ?- member_tree(5,tree(2,tree(1,nil,nil),tree(3,nil,nil))).

T Call: (7) member_tree(5, tree(2, tree(1, nil, nil),tree(3, nil, nil)))

T Call: (8) member_tree(5, tree(3, nil, nil))

T Call: (9) member_tree(5, nil)

T Fail: (9) member_tree(5, nil)

T Redo: (8) member_tree(5, tree(3, nil, nil))

T Fail: (8) member_tree(5, tree(3, nil, nil))

T Redo: (7) member_tree(5, tree(2, tree(1, nil, nil),tree(3, nil, nil)))

T Fail: (7) member_tree(5, tree(2, tree(1, nil, nil),tree(3, nil, nil)))

No

Introduction to logic programming (S. D. Bruda) CS 403, Fall 2024 16 / 35

LISTS

Think of a list as a structure named say, “.” and containing two
parameters

The first one is the elements at the head of the list,
The second is a structure “.”, or the empty list “[]”

That is, .(X,XS) is equivalent to Haskell’s (x::xs)

The difference from Haskell is given by the absence of types in Prolog: A
list can contain any kind of elements
As in Haskell, there is some syntactic sugar:

One can enumerate the elements: [1,[a,4,10],3]
The expression [X|Y] is equivalent to .(X,Y)

We also have the equivalence between [X,Y,Z|R] and .(X,.(Y,.(Z,R))),
and so on

?- [b,a,d] = [d,a,b]. → unification failure
?- [X|Y] = [a,b,c]. → X=a,Y=[b,c]

?- [X|Y] = []. → unification failure
?- [[X1|X2]|X3] = [[1,2,3],4,5]. → X1=1,X2=[2,3],X3=[4,5]

The absence of types in Prolog is brought to extremes: the list [1] is the
structure .(1,[]). However, the empty list [] is an atom!

Introduction to logic programming (S. D. Bruda) CS 403, Fall 2024 17 / 35

LIST PROCESSING

Membership: member/2
member(X,[X|]).

member(X,[|Y]) :- member(X,Y).

What is the answer to the query ?- member(X,[1,2,3,4]).

In Prolog you are asking a logical rather than procedural question, even
when you thinking about a procedural question

There are no functions in Prolog. What if we want that our program to
compute a value?

We invent a new variable that will be bound to the result by various
unification processes

A predicate for concatenating (”appending”) two lists: append/3
append([],L,L).

append([X|R],L,[X|R1]) :- append(R,L,R1).

What is the result of the query ?- append(X,Y,[1,2,3,4]).

Introduction to logic programming (S. D. Bruda) CS 403, Fall 2024 18 / 35

NUMBERS AND OPERATIONS ON NUMBERS

What means “3+4” to Prolog? (as in ?- X = 3 + 4.)
In order to actually evaluate an arithmetic expression, one must use the
operator is/2:
?- X is 3+4

X = 7

Yes

is/2 is a strange predicate in that its second argument must be bound
Example: A Prolog program that receives one number n and computes n!
fact(1,1).

fact(N,R) :- R is N*fact(N-1,R1).

fact(N,R) :- N1 is N-1, fact(N1,R1), R is N*R1.

13 ?- fact(1,X).

X = 1

Yes

14 ?- fact(2,X).

[WARNING: Arithmetic: ‘fact/2’ is not a function]

Exception: (8) G185 is 2*fact(2-1, G274) ?

[WARNING: Unhandled exception]

Introduction to logic programming (S. D. Bruda) CS 403, Fall 2024 19 / 35

NUMBERS (CONT’D)

All the expected operators on numbers work as expected
One somehow strange difference: the operator for ≤ is not <=, but =< instead

Given the call fact(5,X), what happens if one requests a new solution
after Prolog answers X=120? Why? How to fix?
fact(1,1).

fact(N,R) :- N1 is N-1, fact(N1,R1), R is N*R1.

?- fact(5,X).

X = 120 ;

???

Introduction to logic programming (S. D. Bruda) CS 403, Fall 2024 20 / 35

NEGATION AS FAILURE

Negation in Prolog: not/1 or \+/1
Prolog assumes the closed world paradigm. The negation is therefore
different from logical negation:
?- member(X,[1,2,3]).

X = 1 ;

X = 2 ;

X = 3 ;

No

?- not(member(X,[1,2,3])).

No

?- not(not(member(X,[1,2,3]))).

X = _G332 ;

No

not/1 fails upon resatisfaction (a goal can fail in only one way)
not/1 does not bind variables

Introduction to logic programming (S. D. Bruda) CS 403, Fall 2024 21 / 35

NEGATION IN CASE SELECTIONS

positive(X) :- X > 0.

negative(X) :- X < 0.

sign(X,+) :- positive(X).

sign(X,-) :- negative(X).

sign(X,0).

sign1(X,+) :- positive(X).

sign1(X,-) :- negative(X).

sign1(X,0) :- not(positive(X)), not(negative(X)).

?- sign(1,X).

X = + ;

X = 0 ;

No

?- sign1(1,X).

X = + ;

No

Introduction to logic programming (S. D. Bruda) CS 403, Fall 2024 22 / 35

STATE SPACE SEARCH

The concept of state space search is widely used in AI
Idea: a problem can be solved by examining the steps which might be taken
towards its solution
Each action takes the solver to a new state
The solution to such a problem is a list of steps leading from the initial state
to a goal state

Classical example: A Farmer who needs to transport a Goat, a Wolf and
some Cabbage across a river one at a time. The Wolf will eat the Goat if
left unsupervised. Likewise the Goat will eat the Cabbage. How will they
all cross the river?

A state is described by the positions of the Farmer, Goat, Wolf, and Cabbage
The solver can move between states by making a “legal” move (which does
not result in something being eaten)

General form for a state space search problem:
Input:

1 The start state
2 One (or more) goal states or final states
3 The state transition function, or how to get from one state to another

Output: a list of moves or state transitions that lead from the initial state to
one of the final states

Introduction to logic programming (S. D. Bruda) CS 403, Fall 2024 23 / 35

STATE SPACE SEARCH IN PROLOG

Prolog already does it:
search(Final,Final,[]).

search(Current,Final,[M|Result]) :-

move(Current,SomeState,M),

search(SomeState,Final,Result).

The only trick is that Prolog does not explain how it reached the goal
state; it just states whether a goal state is reachable or not
So we also need to provide a way to report the list of moves (hence the
third parameter)

Introduction to logic programming (S. D. Bruda) CS 403, Fall 2024 24 / 35

A SIMPLE STATE SPACE SEARCH PROBLEM

Finding a path in a directed, acyclic graph:
A state is a vertex of the graph

distance(a,f,5).

distance(f,g,2).

distance(a,b,1).

distance(a,d,2).

distance(b,c,2).

distance(c,d,3).

distance(d,e,6).

move(A,B,to(A,B)) :- distance(A,B,_).

b

c

d

e

f

a

g

2

3

6

2

5 1

2

?- search(a,e,R).

R = [to(a,b),to(b,c),to(c,d),to(d,e)] ;

R = [to(a,d),to(d,e)] ;

No

?- search(e,a,R).

No

Introduction to logic programming (S. D. Bruda) CS 403, Fall 2024 25 / 35

SEARCHING A STATE SPACE, REVISED

Often, the search space contains cycles. Then, Prolog search strategy
may fail to produce a solution.
move(A,B,to(A,B)) :- distance(A,B,_).

move(A,B,to(A,B)) :- distance(B,A,_).

?- search(a,e,R).

ERROR: Out of local stack

We can use then a generate and test technique:
We keep track of the previously visited states
Then, we generate a new state (as before), but we also test that we haven’t
been in that state already; we proceed forward only if the test succeeds

search(Initial,Final,Result) :- ?- search(a,e,R).

search(Initial,Final,[Initial],Result). R = [to(a, b), to(b, c),

search(Final,Final,_,[]). to(c, d), to(d, e)] ;

search(Crt,Final,Visited,[M|Result]) :- R = [to(a, d), to(d, e)] ;

move(Crt,AState,M), % generate No

not(member(AState,Visited)), % test

search(AState,Final,[AState|Visited],

Result).

Introduction to logic programming (S. D. Bruda) CS 403, Fall 2024 26 / 35

THE PROBLEM-DEPENDENT DEFINITIONS

Things to do for solving a specific state space search problem:
Establish what is a state for your problem and how will you represent it in
Prolog
Establish your state transition function; that is, define the move/3

predicate
Such a predicate should receive a state, and return another state together
with the move that generates it
Upon resatisfaction, a new state should be returned
If no new state is directly accessible from the current one, move/3 should fail

Introduction to logic programming (S. D. Bruda) CS 403, Fall 2024 27 / 35

LIMITATIONS

The predicate search/3 works on any finite search space
It exploits the fact that Prolog performs by itself a depth-first search.

Since the depth-first search is not guaranteed to terminate on an infinite
search space, neither is search/3

It is possible to implement a breadth-first search in Prolog
However, this cannot take advantage of the search strategy which is built in
the Prolog interpreter (in fact, it sidesteps it altogether)
Such an implementation is thus more complicated and exceeds the scope of
this course (but if you are really curious, contact me)

Introduction to logic programming (S. D. Bruda) CS 403, Fall 2024 28 / 35

ON GOATS, WOLVES, AND CABBAGE

% A state: [Boat,Cabbage,Goat,Wolf]

% Moving around. We use the "generate and test" paradigm:

move(A,B,M) :- move_attempt(A,B,M), legal(B).

% first, attempt to move the Cabbage, then the Goat, then the Wolf:

move_attempt([B,B,G,W],[B1,B1,G,W], moved(cabbage,B,B1)) :- opposite(B,B1).

move_attempt([G,B,G,W],[G1,B,G1,W], moved(goat,G,G1)) :- opposite(G,G1).

move_attempt([W,B,G,W],[W1,B,G,W1], moved(wolf,W,W1)) :- opposite(W,W1).

%... eventually, move the empty boat:

move_attempt([X,C,G,W],[Y,C,G,W], moved(nothing,X,Y)) :- opposite(X,Y).

opposite(south,north). opposite(north,south).

% Make sure that nothing gets eaten:

legal(State) :- not(conflict(State)).

% we cannot allow the Cabbage and the Goat on the same shore unsupervised

conflict([B,C,C,W]) :- opposite(C,B).

% ... nor the Goat and the Wolf...

conflict([B,C,W,W]) :- opposite(W,B).

% ... but anything else is fine.

Introduction to logic programming (S. D. Bruda) CS 403, Fall 2024 29 / 35

ON GOATS, WOLVES, AND CABBAGE (CONT’D)

?- search([north,north,north,north],

[south,south,south,south], R).

R = [moved(goat, north, south),

moved(nothing, south, north),

moved(cabbage, north, south),

moved(goat, south, north),

moved(wolf, north, south),

moved(nothing, south, north),

moved(goat, north, south)] ;

R = [moved(goat, north, south),

moved(nothing, south, north),

moved(wolf, north, south),

moved(goat, south, north),

moved(cabbage, north, south),

moved(nothing, south, north),

moved(goat, north, south)] ;

NoIntroduction to logic programming (S. D. Bruda) CS 403, Fall 2024 30 / 35

ON KNIGHTS AND THEIR TOURS

% The board size is given by the predicate size/1

size(3).

% The position of the Knight is represented by the structure -(X,Y)

% (or X-Y), where X and Y are the coordinates of the square where the

% Knight is located. We represent a move by the position it generates.

% We use, again, the generate and test technique:

move(A,B,B) :- move_attempt(A,B), inside(B).

% There are 8 possible moves in the middle of the board:

move_attempt(I-J, K-L) :- K is I+1, L is J-2.

move_attempt(I-J, K-L) :- K is I+1, L is J+2.

move_attempt(I-J, K-L) :- K is I+2, L is J+1.

move_attempt(I-J, K-L) :- K is I+2, L is J-1.

move_attempt(I-J, K-L) :- K is I-1, L is J+2.

move_attempt(I-J, K-L) :- K is I-1, L is J-2.

move_attempt(I-J, K-L) :- K is I-2, L is J+1.

move_attempt(I-J, K-L) :- K is I-2, L is J-1.

% However, if the Knight is somwhere close to board’s margins, then

% some moves might fall out of the board.

inside(A-B) :- size(Max), A > 0, A =< Max, B > 0, B =< Max.

Introduction to logic programming (S. D. Bruda) CS 403, Fall 2024 31 / 35

ON KNIGHTS AND THEIR TOURS (CONT’D)

?- search(1-1,3-3,R).

R = [2-3, 3-1, 1-2, 3-3] ;

R = [3-2, 1-3, 2-1, 3-3] ;

No

3

1

1 2 3

2

3

1

1 2 3

2

Introduction to logic programming (S. D. Bruda) CS 403, Fall 2024 32 / 35

VARIATIONS ON A SEARCH THEME

Since our search/3 predicate generates all the possible solutions, we
can use it within another generate and test process!
On a 4 × 4 board, a Knight moves from one square S to another square
D. For a given N, find all the paths between S and D in which the Knight
does not make more than N moves.
search_shorter(S,D,N,Result) :- search(S,D,Result), % generate

length(Result,L), L =< N. % test

% length([],0).

% length([_|T],L) :- length(T,L1), L is L1+1.

?- search_shorter(1-1,4-3,5,R).

R = [2-3, 3-1, 4-3] ; R = [3-2, 2-4, 4-3] ;

R = [2-3, 3-1, 1-2, 2-4, 4-3] ; R = [3-2, 2-4, 1-2, 3-1, 4-3] ;

R = [2-3, 4-4, 3-2, 2-4, 4-3] ; R = [3-2, 1-3, 3-4, 2-2, 4-3] ;

R = [2-3, 4-2, 3-4, 2-2, 4-3] ; No

R = [3-2, 4-4, 2-3, 3-1, 4-3] ;

?- search_shorter(1-1,4-3,4,R).

R = [2-3, 3-1, 4-3] ; R = [3-2, 2-4, 4-3] ; No

Introduction to logic programming (S. D. Bruda) CS 403, Fall 2024 33 / 35

VARIATIONS ON A SEARCH THEME (CONT’D)

Given some integer n and two vertices A and B, is there a path from A to
B of weight smaller than n?

distance(a,f,5).

distance(f,g,2).

distance(a,b,1).

distance(a,d,2).

distance(b,c,2).

distance(c,d,3).

distance(d,e,6).

move(A,B,to(A,B,C)) :- distance(A,B,C).

move(A,B,to(A,B,C)) :- distance(B,A,C).

weight([],0).

weight([to(_,_,C)|P],W) :- weight(P,W1), W is W1+C.

smaller(A,B,N,Result) :- search(A,B,Result),

weight(Result,W), W =< N.

b

c

d

e

f

a

g

2

3

6

2

5 1

2

Introduction to logic programming (S. D. Bruda) CS 403, Fall 2024 34 / 35

LOGIC PROGRAMMING

Logic programming Ordinary programming
1. Identify problem Identify problem
2. Assemble information Assemble information
3. Coffee break Figure out solution
4. Encode information in KB Program solution
5. Encode problem instance as facts Encode problem instance as data
6. Ask queries Apply program to data
7. Find false facts Debug procedural errors

Introduction to logic programming (S. D. Bruda) CS 403, Fall 2024 35 / 35

