
Subprograms

Stefan D. Bruda

CS 403, Fall 2024

PROCEDURES AND PARAMETERS

Two fundamental abstraction facilities: data abstraction and process
abstraction
In particular subprograms simplify complex programs though abstraction

Abstraction of actions
Called by name with arguments: Calculate Pay(pay rate, hours worked)

Single entry (caller is suspended for the duration)
Control always returns to the caller when the subprogram terminates
Procedures (subroutines) and functions (or methods in OOP languages)

Design issues for subprograms
Are local variables static or dynamic?

The local reference environment may be static (historical significance only)
The local reference environment may be stack-based (all modern languages)

What are the parameter passing methods?
Are the types of the actual and formal parameters checked?
Can subprograms be passed as parameters? What is the referencing
environment?
Can subprogram definitions be nested?
Can subprograms be overloaded or generic?
Are side effects allowed?
What type of variables can be returned?

Subprograms (S. D. Bruda) CS 403, Fall 2024 1 / 13

PARAMETER PASSING MECHANISMS

Pass by value
Ada: The arguments are expressions evaluated at the time of the call

Parameters are constant values
All the parameters in the body of the procedure will be replaced by those values

Pascal, C: arguments are still expressions evaluated at the time of the call
Now the parameters are local variables, initialized by the arguments from the call
The main method in most programming languages

Pass by reference
The arguments must be variables; then the location of the variable is passed
so the parameter becomes an alias for the argument
Examples of use:

var prefix in Pascal and Modula-2
A reference passed explicitly (& and *) in C and Algol
Arrays are always passed by reference in C and Ada-95
Objects are always passed by reference in Java

Pass by name/lazy evaluation
The textual representation of the argument replaces the name of the
parameter throughout the body of the function, or
Like pass by value but the argument is not evaluated until its first actual use
Examples of use: Algol60 and many functional languages

Subprograms (S. D. Bruda) CS 403, Fall 2024 2 / 13

TYPE CHECKING OF PARAMETERS

Strongly typed languages require parameters to be checked in type and
number
Procedures cannot have a variable number of parameters
Pass by reference: parameters and arguments must have the same type
Pass by value: the condition above is relaxed to assignment compatibility

Subprograms (S. D. Bruda) CS 403, Fall 2024 3 / 13



SUBPROGRAMS AS PARAMETERS

Subprogram parameters still need to be type
checked
The referencing environment can be:

Shallow binding → the environment of the
call statement that enacts the passed
subprogram
Deep binding → the environment of the
definition of the passed subprogram (lexical
closure)
Ad-hoc binding → the environment of the call
statement that passed the subprogram

Example: execution of SUB2 when called by
SUB4

Shallow binding: x = 4 (the referencing
environment is that of SUB4)
Deep binding: x = 1 (the referencing
environment is that of SUB1, the static parent
of SUB2)
Ad-hoc binding: x = 3 (the referencing
environment is that of SUB3)

procedure SUB1;
(* The static parent of

the passed program *)
var x: integer;
procedure SUB2;

begin
write(’x = ’, x)

end;
procedure SUB3;

var x: integer;
begin

x := 3;
SUB4(SUB2)
(* the call stmt

that "enacts"
SUB2 *)

end;
procedure SUB4(SUBX);

var x: integer;
begin

x := 4;
SUBX

end;
begin

x := 1;
SUB3

end;

Subprograms (S. D. Bruda) CS 403, Fall 2024 4 / 13

DEEP BINDING IN HASKELL

increment :: Int -> Int

increment = (+) x -- the first argument of (+) is bound to its

where x = 1 -- value at the point of the definition of

-- increment

foo :: Int -> Int

foo x = 2 * increment x

Main> foo 10

22 -- it would be 40 with shallow binding

Subprograms (S. D. Bruda) CS 403, Fall 2024 5 / 13

ACCESSING NONLOCAL ENVIRONMENTS

Non local variables are those variables that are visible but not locally
declared

Global variables are visible in all units

Static environments (Fortran and COBOL)
All memory allocation can be performed at load time (static)
Location of variables fixed for the duration of program execution
Functions and procedures cannot be nested
Recursion is not allowed

Stack-based environments
Block structured language with recursion → activation of procedure blocks
cannot be allocated statically
A new activation record is created on the stack when a block is entered and
is released on exit (return)

Space needs to be allocated for local variables, temporary space, and a return
pointer
A dynamic link stores the old environment pointer
A static link points to the static parent (for non-local references)

Must keep a pointer to the current activation record (stack pointer, stored in
a register)

Subprograms (S. D. Bruda) CS 403, Fall 2024 6 / 13

STACK-BASED ENVIRONMENT EXAMPLE

program envex:

procedure q;

begin

...

end;

procedure p;

begin

...

q;

...

end

begin (*main*)

...

p;

...

end.

Before main calls p:

Stack pointer

global data for envex

free space

Subprograms (S. D. Bruda) CS 403, Fall 2024 7 / 13



STACK-BASED ENVIRONMENT EXAMPLE (CONT’D)

program envex:

procedure q;

begin

...

end;

procedure p;

begin

...

q;

...

end

begin (*main*)

...

p;

...

end.

p launches:

Stack pointer

Dynamic link

Static link

activation record for p

global data for envex

free space

Subprograms (S. D. Bruda) CS 403, Fall 2024 8 / 13

STACK-BASED ENVIRONMENT EXAMPLE (CONT’D)

program envex:

procedure q;

begin

...

end;

procedure p;

begin

...

q;

...

end

begin (*main*)

...

p;

...

end.

q launches:

Stack pointer

Dynamic link

Static link

activation record for q

Dynamic link

Static link

activation record for p

global data for envex

free space

Subprograms (S. D. Bruda) CS 403, Fall 2024 9 / 13

STACK-BASED ENVIRONMENT EXAMPLE (CONT’D)

program envex:

procedure q;

begin

...

end;

procedure p;

begin

...

q;

...

end

begin (*main*)

...

p;

...

end.

q returns:

Stack pointer

Dynamic link

Static link

activation record for q

Dynamic link

Static link

activation record for p

global data for envex

free space

Subprograms (S. D. Bruda) CS 403, Fall 2024 10 / 13

STACK-BASED ENVIRONMENT EXAMPLE (CONT’D)

program envex:

procedure q;

begin

...

end;

procedure p;

begin

...

q;

...

end

begin (*main*)

...

p;

...

end.

p returns:

Stack pointer

Dynamic link

Static link

activation record for q

Dynamic link

Static link

activation record for p

global data for envex

free space

Subprograms (S. D. Bruda) CS 403, Fall 2024 11 / 13



CONTENT OF THE ACTIVATION RECORD

Return address
Contains pointer back to code segment + offset of the address following the
call

Static link
Implements access to non-local variables for deep/lexical binding
Non-local references could be made by searching down the static chain
However, we cannot search at run time (no name information anymore!)
But scopes are known at compile time so the compuler knows the length of
the static chain
Thus a non-local variable is represented by an ordered pair of integers
(chain offset,local offset)

References to variables beyond static parent are costly

Dynamic link
Represents the history of the execution
Implements access to non-local variables for shallow binding

Parameters
Local variables

Subprograms (S. D. Bruda) CS 403, Fall 2024 12 / 13

BLOCKS

Blocks can be treated as parameterless subprograms
Always called from same place
But we nonetheless need to access local as well as non-local variables

The environment can be maintained in a stack-based fashion for any
block structured language with static scoping

Subprograms (S. D. Bruda) CS 403, Fall 2024 13 / 13


