THE COMPILATION PROCESS

Character stream

Ncanner (lexical analysisD
Token stream

marser (syntax analysisD
Memantic analysis)

Stefan D. Bruda Abstract syntax tree

Scanning and Parsing: A Recap

Parse tree

Intermediate code optimizatiorD

Modified intermediate form

CS403, Fall 2024 \’Cl'arget code generatiorD
ki /
Target language

\@'arget code optimizatiorD
Modified target language
Symbol table

Scanning and Parsing: A Recap (S. D. Bruda) CS403, Fall 2024 1/29

THE LEXICAL ANALYZER EXAMPLE OF TOKENS AND ATTRIBUTES
@ Main role: split the input character stream into tokens printf("Score = %d\n", score);
o Usually even interacts with the symbol table, inserting identifiers in it Lexeme Token Attribute
(especially useful for languages that do not require declarations) printf id pointer to symbol table entry
o This simplifies the design and portability of the parser (open_paren
@ A token is a data structure that contains: "Score = %d\n" string
o The token name = abstract symbol representing a kind of lexical unit > comma
o A possibly empty set of attributes score id pointer to symbol table entry
@ A pattern is a description of the form recognized in the input as a) cls_paren
particular token ; semicolon
@ A lexeme is a sequence of characters in the source program that matches E=Mx*C*x2 .
a particular pattern of a token and so represents an instance of that token Lexeme Token Attribute
@ Most programming languages feature the following tokens E id pointer to symbol table entry
@ One token for each keyword N .aSSIQn .
@ One token for each operator or each class of operators (e.g., relational M id pointer to symbol table entry
operators) * !‘nul _
o One token for all identifiers C id pointer to symbol table entry
o One or more tokens for literals (numerical, string, etc.) *ok exp
@ One token for each punctuation symbol (parentheses, commas, etc.) 2 int_num numerical value 2

Scanning and Parsing: A Recap (S. D. Bruda) CS408, Fall 2024 2/29 Scanning and Parsing: A Recap (S. D. Bruda) CS408, Fall 2024 3/29

SPECIFICATION OF TOKENS

£52)
SYNTACTIC SUGAR FOR REGULAR EXPRESSIONS -

@ Token patterns are simple enough so that they can be specified using
regular expressions
@ Alphabet ¥: a finite set of symbols (e.g. binary digits, ASCII)
@ Strings (not sets!) over an alphabet; empty string:
o Useful operation: concatenation (- or juxtaposition)
o ¢ is the identity for concatenation (sw = we = w)
@ Language: a countable set of strings
o Abuse of notation: For a € X~ we write a instead of {a}
o Useful elementary operations: union (U, +, |) and concatenation (- or
juxtaposition): Lilb =Ly L= {W1 Wo:wy €L AW € Lz}

e Exponentiation: L" = {wywz---w, : V1 < i< n:w € L} (sothat L° = {¢})

e Kleene closure: L* = |J,, L"
e Positive closure: L™ = J,., L"

@ An expression containing only symbols from %, ¢, (}, union,
concatenation, and Kleene closure is called a regular expression

@ A language described by a regular expression is a regular language

Scanning and Parsing: A Recap (S. D. Bruda) CS403, Fall 2024

EXAMPLES OF REGULAR DEFINITIONS

4/29

Notation Regular expression

rt rr* one or more instances (positive closure)

r? rleorr+eorrUe zeroorone instance

[a1a2---an] atlas| - |an character class

[a1 — an] ailag| - |an provided that a;, a», ...a, are in se-
quence

[a1az- - ap) anything except a1, a, ... an

["a1 — an]

@ The tokens in a programming language are usually given as regular
definitions = collection of named regular languages

Scanning and Parsing: A Recap (S. D. Bruda) CS403, Fall 2024 5/29

STATE TRANSITION DIAGRAMS

letter. = [A—Za—z]
digit = [0—9]
id = letter_ (letter_| digit)*
digits = digit"
fraction = . digits
exp = E [+-]?digits
number = digits fraction? exp?
if = if
then = then
else = else
relop = < | > | <=|>=|=|I=

Scanning and Parsing: A Recap (S. D. Bruda) CS403, Fall 2024

6/29

@ In order for regular expressions to be used for lexical analysis they must
be “compiled” into state transition diagrams

@ Also called deterministic finite automata (DFA)

@ Finite directed graph

@ Edges (transitions) labeled with symbols from an alphabet
@ Nodes (states) labeled only for convenience
@ One initial state 0 0
@ Several accepting states (double circles) Q’\/

@ Astring cicocs. .. C, is accepted by a state transition diagram if there
exists a path from the starting state to an accepting state such that the

sequence of labels along the path is ¢y, ¢, ..., ¢y
Cq C2 C3 Cn
OO O

@ Same state might be visited more than once
o Intermediate states might be final

@ The set of exactly all the strings accepted by a state transition diagram is
the language accepted (or recognized) by the state transition diagram

Scanning and Parsing: A Recap (S. D. Bruda) CS403, Fall 2024 7129

SOFTWARE REALIZATION

@ Big practical advantages of DFA: easy and efficient implementation:
o Interface to define a vocabulary and a function to obtain the input tokens

typename vocab; /* alphabet + end-of-string */
const vocab EOS; /* end-of-string pseudo-token */
vocab getchr(void); /* returns next symbol */

o Variable (state) changed by a simple switch statement as we go along
int main (void) {
typedef enum {SO, S1, ... } state;
state s = S0; vocab t = getchr();
while (t != E0S) {
switch (s) {

case SO0: if (t == ...) s = ...; break;
if (¢t == ...) s = ...; break;

case S1:

} /* switch */

t = getchr(); } /* while */

/* accept iff the current state s is final */ When returning from *-ed states must re-
} tract last character
Scanning and Parsing: A Recap (S. D. Bruda) CS403, Fall 2024 8/29 Scanning and Parsing: A Recap (S. D. Bruda) CS403, Fall 2024 9/29

PRACTICAL EXAMPLE: LEX i~ | LEX BEHAVIOUR

@ The LEX language is a programming language particularly suited for
working with regular expressions

o Actions can also be specified as fragments of C/C++ code

@ The LEX compiler compiles the LEX language (e.g., scanner.1) into
C/C++ code (lex.yy.c)

o The resulting code is then compiled to produce the actual lexical analyzer

@ LEX compile the given regular expressions into one big state transition
diagram, which is then repeatedly run on the input

o The use of this lexical analyzer is through repeatedly calling the function @ LEx conflict resolution rules:
yylex() which will return a new token at each invocation e Always prefer a longer to a shorter lexeme
o The attribute value (if any) is placed in the global variable yylval o If the Ionger'lexelme matches more than one pattern then prefer the pattern
o Additional global variable: yytext (the lexeme) that comes first in the LEX program
' ' _ @ LEX always reads one character ahead, but then retracts the lookahead
@ Structure of a LEX program: @ Declarations include variables, character upon returning the token

Declarations constants, regular definitions o Only the lexeme itself in therefore consumed
hho @ Transition rules have the form
E/r?nslatlon rules Pattern { Action }
e;ljxiliary functions where the pattern is a r'egglar

expression and the action is

arbitrary C/C++ code

Scanning and Parsing: A Recap (S. D. Bruda) CS403, Fall2024 10/29 Scanning and Parsing: A Recap (S. D. Bruda) CS403, Fall 2024 11/29

CONTEXT-FREE GRAMMARS -l DERIVATIONS

@ A context-free grammar is a tuple G = (N, X, R, S), where
@ Y is an alphabet of terminals

o N alphabet of symbols called by contrast nonterminals e G=(N,,R,YS)

° Traditiopally nonte_:rminals are capitalized or surrounded by (and), everything @ Arewriting rule A ::= v/ € R is used to rewrite its left-hand side (A) into its
else being a terminal fight-hand side (v/):

o S e Nis the axiom (or the start symbol) . . o _ L

e RC N x (NUX)* is the set of (rewriting) rules or productions ou=v iff 3Ixye(NUE) :3JAcN:u=xAy,v=xvy, A=V cR
@ Common ways of expressing (a,8) € R: o« — fora == f ° Revyriting can be chained (=*, the reflexive and transitive closure of = =
@ Often terminals are quoted (which makes the (and) unnecessary) derivation)

@ Examples: o s="¢diffs=¢,s= &, orthere exist strings s1, sz, ..., Sp such that

S=>8 =>8%= - -=>5=5

(exp) 1= CONST (stmt) == o (pal) = 0O(pal)0 = 01(pal)10 = 010(pal)010 = 0101010
v | VAR = (exp) ;
VAR
I (exp) (0p) (exp) | if ((exp)) (stmt) else (stmt) (paly == €| 0]1]0 (pal)0|1 (pal)1
L (o)) | while ((exp)) (stmt) .)
P | {(seq) } @ The language generated by grammar G: exactly all the terminal strings
fop) =[x/ (seq) == | (stmt) (seq) generated from S: L(G) ={w e X*: S=" w}
(balanced) = ¢
(balanced) ::= 0 (balanced) 1
Scanning and Parsing: A Recap (S. D. Bruda) CS403, Fall 2024 12/29 Scanning and Parsing: A Recap (S. D. Bruda) CS403, Fall 2024 13/29

PARSE TREES +- | DERIVATIONS AND PARSE TREES

@ Every derivation starting from some nonterminal has an associated parse
tree (rooted at the starting nonterminal)

@ Two derivations are similar iff only the order of rule application varies =
can obtain one derivation from the other by repeatedly flipping

@ Forevery A ::=¢ € R the following is a parse tree (with yield ¢): IA consecutive rule applications

@ Definition:
@ Forevery ac NU X the following is a parse tree (with yield a): ®a

@ If the following are parse trees (with yields y1, yo, ..., ¥a, respectively): o Two similar derivations have identical parse trees
A, A, A, o Can use a “standard” derivation: leftmost (A:> w) or rightmost (A:> w)

and A ::= AA>... A, € R, then the following is a parse tree (w/ yield . .
B " g P W'y The following statements are equivalent:

V1Yo ... Yn): ' ' '
@ there exists a parse tree with root A and yield w
o A=*w
L
o A=*w
R
o A=*w y
@ Yield: concatenation of leaves in inorder @ Ambiguity of a grammar: there exists a string that has two derivations

that are not similar (i.e., two derivations with diferent parse trees)
@ Can be inherent or not — impossible to determine algorithmically

Scanning and Parsing: A Recap (S. D. Bruda) CS403, Fall 2024 14/29 Scanning and Parsing: A Recap (S. D. Bruda) CS403, Fall 2024 15/29

INHERENT AMBIGUITY IN C++ TEMPLATES - B PARSING

. . @ Interface to lexical analysis:
@ Consider the following code:

. typename vocab; /* alphabet + end-of-string */
int y; . const vocab EOS; /* end-of-string pseudo-token */
template <class T> void g(T& v) { vocab gettoken(void); /* returns next token */

} Taix(y)s @ Parsing = determining whether the current input belongs to the given

language
o In practice a parse tree is constructed in the process as well
@ General method: Not as efficient as for finite automata

o The statement T: :x(y) can be

@ the function call (member function x of T applied to y), or
@ the declaration of y as a variable of type T: :x.

o Resolution: unless otherwise stated, an identifier is assumed to refer to @ Several possible derivations starting from the axiom, must choose the right
something that is not a type or template. one
@ If we want something else, we use the keyword typename: o Careful housekeeping (dynamic programming) reduces the otherwise
T::x(y); // function x of T applied to y exponential complexity to O(ns)
typename T::x(y); // y is a variable of type T::x e We want linear time instead, so we want to determine what to do next based

on the next token in the input

Scanning and Parsing: A Recap (S. D. Bruda) CS403, Fall 2024 16/29 Scanning and Parsing: A Recap (S. D. Bruda) CS403, Fall 2024 17/29

RECURSIVE DESCENT PARSING RECURSIVE DESCENT EXAMPLE

@ Construct a function for each nonterminal typedef enum { VAR, EQ, IF, ELSE, WHILE, OPN_BRACE, CLS_BRACE,

@ Decide which function to call based on the next input token = linear OPN_PAREN, CLS_PAREN, SEMICOLON, EOS } vocab;
complexity vocab gettoken() {...}
vocab t; vocab t;

void MustBe(vocab ThisToken) {...}
void MustBe (vocab ThisToken) {

if (t != ThisToken) { printf("reject"); exit(0); } void Statement();
t = gettoken(); void Sequence();
}
void Balanced (void) { int main (void) { int main(Q) {
switch (t) { t = gettoken(); t = gettoken();
case EOS: Balanced(); Statement () ;
case ONE: /* <empty> */ /* accept iff if (t != E0S) printf("String not accepted\n");
break; t == E0S %/ ' return O; 3
default: /* O <balanced> 1 */ } void Sequence() {
MustBe (ZERO) ; if (t == CLS_BRACE) /* <empty> */ ;
Balanced(); else { /* <statement> <sequence> */
MustBe (ONE) ; Statement () ;
} Sequence () ;
} /* Balanced */ } }

Scanning and Parsing: A Recap (S. D. Bruda) CS403, Fall 2024 18/29 Scanning and Parsing: A Recap (S. D. Bruda) CS403, Fall 2024 19/29

RECURSIVE DESCENT EXAMPLE (CONT’D)

void Statement() {

switch(t) {

case SEMICOLON: /* ; *x/
t = gettoken();
break;

case VAR: /* <var> =
t = gettoken();
MustBe (EQ) ;
Expression();
MustBe (SEMICOLON) ;
break;

case IF: /* if (<expr>) <statement> else <statement> */
t = gettoken();
MustBe (OPEN_PAREN) ;
Expression();
MustBe (CLS_PAREN) ;
Statement () ;
MustBe (ELSE) ;
Statement () ;
break;

<exp> */

Scanning and Parsing: A Recap (S. D. Bruda) CS403, Fall 2024

PARSE TREES VS. ABSTRACT SYNTAX TREES

@ In practice the output of a parser is a somehow simplified parse tree
called abstract syntax tree (AST)
o Some tokens in the program being parsed have only a syntactic role (to
identify the respective language construct and its components)
@ Node information might be augmented to replace them
o These tokens have no further use and so they are omitted form the AST
o Other than this omission the AST looks exactly like a parse tree
@ Examples of parse trees versus AST
Conditional (parse tree):

(if)

AN

(exp) (stmt) (stmt)

IF OPN_PAREN

(exp) CLS_PAREN

Assignment (parse tree):
(stmt)

(stmt) ELSE (stmt)

(assign)

)

(exp)
CS403, Fall 2024

/

VAR E

\

(exp)

Scanning and Parsing: A Recap (S. D. Bruda)

20/29

Consitional (AST):

Assignment (AST):

22/29

RECURSIVE DESCENT EXAMPLE (CONT’D)

case WHILE: /* while (exp) <statement> */
t = gettoken();
MustBe (OPEN_PAREN) ;
Expression();
MustBe (CLS_PAREN) ;
Statement () ;
break;

default: /* { <sequence } */
MustBe (OPN_BRACE) ;
Sequence() ;
MustBe (CLS_BRACE) ;

} /% switch */

} /* Statement () */

Scanning and Parsing: A Recap (S. D. Bruda) CS403, Fall 2024

CONSTRUCTING THE PARSE TREE

@ The parse tree/AST can be constructed through the recursive calls:

e Each function creates a current node
@ The children are populated through recursive calls
@ The current node is then returned

class Node {...};

Node* Sequence() {
Node* current = new Node(SER, ...);
if (t == CLS_BRACE) /* <empty> */ ;
else { /* <statement> <sequence> */
current.addChild(Statement());
current.addChild(Sequence());
}

return current;

Scanning and Parsing: A Recap (S. D. Bruda) CS403, Fall 2024

21/29

23/29

.‘.' ! !,.;g
CONSTRUCTING THE PARSE TREE (CONT’D) ' RECURSIVE DESCENT PARSING: LEFT FACTORING --

Node* Statement() { @ Not all grammars are suitable for recursive descent:
Node* current;
switch(t) { (stmt) €

case SEMICOLON: /% ; */
t = gettoken();
return new Node (EMPTY) ;
break;
case VAR: /* <var> = <exp> */
current = new Node(ASSIGN, ...);

VAR := (exp)

IF (exp) THEN (stmt) ELSE (stmt)
WHILE (exp) DO (stmt)

BEGIN (seq) END

current.addChild(VAR, ...); (seq) (stmt) | (stmt) ; (seq)
t = gettoken();
MustBe (EQ) ; . . .
current.addChild (Expression()); o Both rules for (seq) begin with the same nonterminal
MustBe (SEMICOLON) ; o Impossible to decide which one to apply based only on the next token
break; o Fortunately concatenation is distributive over union so we can fix the

case IF: /* if (<expr>) <statement> else <statement> */ grammar (left factoring):
current = new Node(COND, ...);

/% b y v ¢) (seq) == (stmt) (seqTail)

} (seqTail) == ¢]; (seq)

return current;

¥
Scanning and Parsing: A Recap (S. D. Bruda) CS403, Fall 2024 24/29 Scanning and Parsing: A Recap (S. D. Bruda) CS403, Fall 2024 25/29

RECURSIVE DESCENT PARSING: AMBIGUITY

@ Any left recursion in the grammar will cause the parser to go into an

@ Some programming constructs are inherently ambiguous infinite loop:
(stmt) == if ((exp)) (stmt) (exp) == (exp) (addop) (term) | (term)
| if ((exp)) (stmt) else (stmt) @ Solution: eliminate left recursion using a closure
@ Solution: choose one path and stick to it (e.g., match the else-statement (exp) == (term) (closure)
with the nearest else-less if statement) (closure) = &
case IF: | (addop) (term) (closure)

t = gettoken();
MustBe (OPEN_PAREN) ;

Expression() ; @ Not the same language theoretically, but differences not relevant in practice

MustBe (CLS_PAREN) ; @ This being said, some languages are simply not parseable using
Statement () ; recursive descent
if (v == ELSE) { (palindrome) == ¢]0] 1|0 (palindrome) 0 | 1 (palindrome) 1
t = gettoken();
Statement () ; o No way to know when to choose the ¢ rule
} o No way to choose between the second and the fourth rule

@ No way to choose between the third and the fifth rule

Scanning and Parsing: A Recap (S. D. Bruda) CS4083, Fall 2024 26/29 Scanning and Parsing: A Recap (S. D. Bruda) CS403, Fall 2024 27/29

Scanning and Parsing: A Recap (S. D. Bruda)

RECURSIVE DESCENT PARSING: SUFFICIENT

CONDITIONS

SCANNING AND PARSING

o first(«) = set of all initial tokens in the strings derivable from «

o follow({(N)) = set of all initial tokens in nonempty strings that may follow
(N) (possibly including EQS)
@ Sufficient conditions for a grammar to allow recursive descent parsing:
e For(N) == aji|az| ... | an must have first(c;) N first(a;) = 0,
1<i<j<n
o Whenever (N) =* ¢ must have follow((N)) N first((N)) = 0
@ Grammars that do not have these properties may be fixable using left
factoring, closure, etc.

@ Method for constructing the recursive descent function NO) for the
nonterminal (N) with rules (N) == ay |az| ... | an:
@ For o; # < apply the rewriting rule (N) ::= «; whenever the next token in the
input is in FIRST(ay)
@ For a; = ¢ apply the rewriting rule (N) ::= q; (thatis, (N) ::= &) whenever
the next token in the input is in FOLLOW((N))
@ Signal a syntax error in all the other cases

CS403, Fall 2024 28/29

Scanning and Parsing: A Recap (S. D. Bruda)

Steps to parse a programming language:
@ Construct a scanner
o Express the lexical structure of the language as regular expressions
o Convert those regular expressions into a finite automaton (can be
automated) = the scanner
@ Construct a parser
o Express the syntax of the language as a context-free grammar
o Adjust the grammar so that it is suitable for recursive descent
o Construct the recursive descent parser for the grammar (can be automated)
= the parser
@ Run the parser on a particular program
o This implies calls to the scanner to obtain the tokens
o The result is a parse tree, that will be used in the subsequent steps of the
compilation process

CS403, Fall 2024 29/29

