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THE LEXICAL ANALYZER

Main role: split the input character stream into tokens
Usually even interacts with the symbol table, inserting identifiers in it
(especially useful for languages that do not require declarations)
This simplifies the design and portability of the parser

A token is a data structure that contains:
The token name = abstract symbol representing a kind of lexical unit
A possibly empty set of attributes

A pattern is a description of the form recognized in the input as a
particular token
A lexeme is a sequence of characters in the source program that matches
a particular pattern of a token and so represents an instance of that token
Most programming languages feature the following tokens

One token for each keyword
One token for each operator or each class of operators (e.g., relational
operators)
One token for all identifiers
One or more tokens for literals (numerical, string, etc.)
One token for each punctuation symbol (parentheses, commas, etc.)
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EXAMPLE OF TOKENS AND ATTRIBUTES

printf("Score = %d\n", score);

Lexeme Token Attribute
printf id pointer to symbol table entry
( open paren
"Score = %d\n" string
, comma
score id pointer to symbol table entry
) cls paren
; semicolon

E = M * C ** 2

Lexeme Token Attribute
E id pointer to symbol table entry
= assign
M id pointer to symbol table entry
* mul
C id pointer to symbol table entry
** exp
2 int num numerical value 2
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SPECIFICATION OF TOKENS

Token patterns are simple enough so that they can be specified using
regular expressions
Alphabet Σ: a finite set of symbols (e.g. binary digits, ASCII)
Strings (not sets!) over an alphabet; empty string: ε

Useful operation: concatenation (· or juxtaposition)
ε is the identity for concatenation (εw = wε = w)

Language: a countable set of strings
Abuse of notation: For a ∈ Σ we write a instead of {a}
Useful elementary operations: union (∪, +, |) and concatenation (· or
juxtaposition): L1L2 = L1 · L2 = {w1w2 : w1 ∈ L1 ∧ w2 ∈ L2}
Exponentiation: Ln = {w1w2 · · ·wn : ∀ 1 ≤ i ≤ n : wi ∈ L} (so that L0 = {ε})
Kleene closure: L∗ =

⋃
n≥0 Ln

Positive closure: L+ =
⋃

n>0 Ln

An expression containing only symbols from Σ, ε, ∅, union,
concatenation, and Kleene closure is called a regular expression

A language described by a regular expression is a regular language
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SYNTACTIC SUGAR FOR REGULAR EXPRESSIONS

Notation Regular expression
r+ rr∗ one or more instances (positive closure)
r? r |ε or r + ε or r ∪ ε zero or one instance
[a1a2 · · · an] a1|a2| · · · |an character class
[a1 − an] a1|a2| · · · |an provided that a1, a2, . . . an are in se-

quence
[ â1a2 · · · an] anything except a1, a2, . . . an
[ â1 − an]

The tokens in a programming language are usually given as regular
definitions = collection of named regular languages
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EXAMPLES OF REGULAR DEFINITIONS

letter = [A − Za − z ]

digit = [0 − 9]
id = letter (letter | digit)∗

digits = digit+

fraction = . digits
exp = E [+−]? digits

number = digits fraction? exp?
if = i f

then = t h e n
else = e l s e

rel op = < | > | <= | >= | == | ! =
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STATE TRANSITION DIAGRAMS

In order for regular expressions to be used for lexical analysis they must
be “compiled” into state transition diagrams
Also called deterministic finite automata (DFA)
Finite directed graph
Edges (transitions) labeled with symbols from an alphabet
Nodes (states) labeled only for convenience
One initial state
Several accepting states (double circles)

0s
1s

0

1

1

0

A string c1c2c3 . . . cn is accepted by a state transition diagram if there
exists a path from the starting state to an accepting state such that the
sequence of labels along the path is c1, c2, . . . , cn

1
c

2
c

3
c

n
c

Same state might be visited more than once
Intermediate states might be final

The set of exactly all the strings accepted by a state transition diagram is
the language accepted (or recognized) by the state transition diagram
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SOFTWARE REALIZATION

Big practical advantages of DFA: easy and efficient implementation:
Interface to define a vocabulary and a function to obtain the input tokens

typename vocab; /* alphabet + end-of-string */

const vocab EOS; /* end-of-string pseudo-token */

vocab getchr(void); /* returns next symbol */

Variable (state) changed by a simple switch statement as we go along
int main (void) {

typedef enum {S0, S1, ... } state;

state s = S0; vocab t = getchr();

while ( t != EOS ) {

switch (s) {

case S0: if (t == ...) s = ...; break;

if (t == ...) s = ...; break;

...

case S1: ...

...

} /* switch */

t = getchr(); } /* while */

/* accept iff the current state s is final */

}
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EXAMPLES OF STATE TRANSITION DIAGRAMS

0 1 2

3

4

5

6

7

8

< =

>

oth=

>

=

oth

return 〈relop, LE〉

return 〈relop, NE〉

* return 〈relop, LT〉
return 〈relop, EQ〉

return 〈relop, GE〉

* return 〈relop, GT〉

When returning from *-ed states must re-
tract last character

digit

.

digit

E

+|−

digit

other

other

other

E

dgt

digit

digit

digit
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PRACTICAL EXAMPLE: LEX

The LEX language is a programming language particularly suited for
working with regular expressions

Actions can also be specified as fragments of C/C++ code

The LEX compiler compiles the LEX language (e.g., scanner.l) into
C/C++ code (lex.yy.c)

The resulting code is then compiled to produce the actual lexical analyzer
The use of this lexical analyzer is through repeatedly calling the function
yylex() which will return a new token at each invocation
The attribute value (if any) is placed in the global variable yylval

Additional global variable: yytext (the lexeme)

Structure of a LEX program:
Declarations
%%

translation rules
%%

auxiliary functions

Declarations include variables,
constants, regular definitions
Transition rules have the form

Pattern { Action }
where the pattern is a regular
expression and the action is
arbitrary C/C++ code
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LEX BEHAVIOUR

LEX compile the given regular expressions into one big state transition
diagram, which is then repeatedly run on the input
LEX conflict resolution rules:

Always prefer a longer to a shorter lexeme
If the longer lexeme matches more than one pattern then prefer the pattern
that comes first in the LEX program

LEX always reads one character ahead, but then retracts the lookahead
character upon returning the token

Only the lexeme itself in therefore consumed
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CONTEXT-FREE GRAMMARS

A context-free grammar is a tuple G = (N,Σ,R,S), where
Σ is an alphabet of terminals
N alphabet of symbols called by contrast nonterminals

Traditionally nonterminals are capitalized or surrounded by ⟨ and ⟩, everything
else being a terminal

S ∈ N is the axiom (or the start symbol)
R ⊆ N × (N ∪ Σ)∗ is the set of (rewriting) rules or productions

Common ways of expressing (α, β) ∈ R: α → β or α ::= β
Often terminals are quoted (which makes the ⟨ and ⟩ unnecessary)

Examples:

⟨exp⟩ ::= CONST
| VAR
| ⟨exp⟩ ⟨op⟩ ⟨exp⟩
| ( ⟨exp⟩ )

⟨op⟩ ::= + | − | ∗ | /

⟨stmt⟩ ::= ;
| VAR = ⟨exp⟩ ;
| if ( ⟨exp⟩ ) ⟨stmt⟩ else ⟨stmt⟩
| while ( ⟨exp⟩ ) ⟨stmt⟩
| { ⟨seq⟩ }

⟨seq⟩ ::= ε | ⟨stmt⟩ ⟨seq⟩

⟨balanced⟩ ::= ε
⟨balanced⟩ ::= 0 ⟨balanced⟩ 1
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DERIVATIONS

G = (N,Σ,R,S)

A rewriting rule A ::= v ′ ∈ R is used to rewrite its left-hand side (A) into its
right-hand side (v ′):

u ⇒ v iff ∃ x , y ∈ (N ∪ Σ)∗ : ∃A ∈ N : u = xAy , v = xv ′y ,A ::= v ′ ∈ R

Rewriting can be chained (⇒∗, the reflexive and transitive closure of ⇒ =
derivation)

s ⇒∗ s′ iff s = s′, s ⇒ s′, or there exist strings s1, s2, . . . , sn such that
s ⇒ s1 ⇒ s2 ⇒ · · · ⇒ sn ⇒ s′

⟨pal⟩ ⇒ 0⟨pal⟩0 ⇒ 01⟨pal⟩10 ⇒ 010⟨pal⟩010 ⇒ 0101010

⟨pal⟩ ::= ε | 0 | 1 | 0 ⟨pal⟩ 0 | 1 ⟨pal⟩ 1

The language generated by grammar G: exactly all the terminal strings
generated from S: L(G) = {w ∈ Σ∗ : S ⇒∗ w}

Scanning and Parsing: A Recap (S. D. Bruda) CS403, Fall 2024 13 / 29

PARSE TREES

Definition:
1 For every a ∈ N ∪ Σ the following is a parse tree (with yield a): a

2 For every A ::= ε ∈ R the following is a parse tree (with yield ε): A

ε

3 If the following are parse trees (with yields y1, y2, . . . , yn, respectively):

n1
A

2
...T

1
T

2
T

n

AA

and A ::= A1A2 . . .An ∈ R, then the following is a parse tree (w/ yield
y1y2 . . . yn):

A

1
A

2
...T

1
T

2
T

n

A
n

A

Yield: concatenation of leaves in inorder

Scanning and Parsing: A Recap (S. D. Bruda) CS403, Fall 2024 14 / 29

DERIVATIONS AND PARSE TREES

Every derivation starting from some nonterminal has an associated parse
tree (rooted at the starting nonterminal)
Two derivations are similar iff only the order of rule application varies =
can obtain one derivation from the other by repeatedly flipping
consecutive rule applications

Two similar derivations have identical parse trees

Can use a “standard” derivation: leftmost (A
L

⇒∗ w) or rightmost (A
R
⇒∗ w)

Theorem
The following statements are equivalent:

there exists a parse tree with root A and yield w

A ⇒∗ w

A
L

⇒∗ w

A
R

⇒∗ w

Ambiguity of a grammar: there exists a string that has two derivations
that are not similar (i.e., two derivations with diferent parse trees)

Can be inherent or not — impossible to determine algorithmically
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INHERENT AMBIGUITY IN C++ TEMPLATES

Consider the following code:
int y;

template <class T> void g(T& v) {

T::x(y);

}

The statement T::x(y) can be
the function call (member function x of T applied to y), or
the declaration of y as a variable of type T::x.

Resolution: unless otherwise stated, an identifier is assumed to refer to
something that is not a type or template.

If we want something else, we use the keyword typename:
T::x(y); // function x of T applied to y

typename T::x(y); // y is a variable of type T::x
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PARSING

Interface to lexical analysis:
typename vocab; /* alphabet + end-of-string */

const vocab EOS; /* end-of-string pseudo-token */

vocab gettoken(void); /* returns next token */

Parsing = determining whether the current input belongs to the given
language

In practice a parse tree is constructed in the process as well

General method: Not as efficient as for finite automata
Several possible derivations starting from the axiom, must choose the right
one
Careful housekeeping (dynamic programming) reduces the otherwise
exponential complexity to O(n3)
We want linear time instead, so we want to determine what to do next based
on the next token in the input
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RECURSIVE DESCENT PARSING

Construct a function for each nonterminal
Decide which function to call based on the next input token = linear
complexity
vocab t;

void MustBe (vocab ThisToken) {

if (t != ThisToken) { printf("reject"); exit(0); }

t = gettoken();

}

void Balanced (void) { int main (void) {

switch (t) { t = gettoken();

case EOS: Balanced();

case ONE: /* <empty> */ /* accept iff

break; t == EOS */

default: /* 0 <balanced> 1 */ }

MustBe(ZERO);

Balanced();

MustBe(ONE);

}

} /* Balanced */
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RECURSIVE DESCENT EXAMPLE

typedef enum { VAR, EQ, IF, ELSE, WHILE, OPN_BRACE, CLS_BRACE,

OPN_PAREN, CLS_PAREN, SEMICOLON, EOS } vocab;

vocab gettoken() {...}

vocab t;

void MustBe(vocab ThisToken) {...}

void Statement();

void Sequence();

int main() {

t = gettoken();

Statement();

if (t != EOS) printf("String not accepted\n");

return 0; }

void Sequence() {

if (t == CLS_BRACE) /* <empty> */ ;

else { /* <statement> <sequence> */

Statement();

Sequence();

} }
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RECURSIVE DESCENT EXAMPLE (CONT’D)

void Statement() {

switch(t) {

case SEMICOLON: /* ; */

t = gettoken();

break;

case VAR: /* <var> = <exp> */

t = gettoken();

MustBe(EQ);

Expression();

MustBe(SEMICOLON);

break;

case IF: /* if (<expr>) <statement> else <statement> */

t = gettoken();

MustBe(OPEN_PAREN);

Expression();

MustBe(CLS_PAREN);

Statement();

MustBe(ELSE);

Statement();

break;
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RECURSIVE DESCENT EXAMPLE (CONT’D)

case WHILE: /* while (exp) <statement> */

t = gettoken();

MustBe(OPEN_PAREN);

Expression();

MustBe(CLS_PAREN);

Statement();

break;

default: /* { <sequence } */

MustBe(OPN_BRACE);

Sequence();

MustBe(CLS_BRACE);

} /* switch */

} /* Statement () */
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PARSE TREES VS. ABSTRACT SYNTAX TREES

In practice the output of a parser is a somehow simplified parse tree
called abstract syntax tree (AST)

Some tokens in the program being parsed have only a syntactic role (to
identify the respective language construct and its components)
Node information might be augmented to replace them
These tokens have no further use and so they are omitted form the AST
Other than this omission the AST looks exactly like a parse tree

Examples of parse trees versus AST
Conditional (parse tree): Consitional (AST):

〈stmt〉

IF OPN PAREN 〈exp〉 CLS PAREN 〈stmt〉 ELSE 〈stmt〉

〈if〉

〈exp〉 〈stmt〉 〈stmt〉
Assignment (parse tree): Assignment (AST):

〈stmt〉

VAR EQ 〈exp〉

〈assign〉

VAR 〈exp〉
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CONSTRUCTING THE PARSE TREE

The parse tree/AST can be constructed through the recursive calls:
Each function creates a current node
The children are populated through recursive calls
The current node is then returned

class Node {...};

Node* Sequence() {

Node* current = new Node(SEQ, ...);

if (t == CLS_BRACE) /* <empty> */ ;

else { /* <statement> <sequence> */

current.addChild(Statement());

current.addChild(Sequence());

}

return current;

}
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CONSTRUCTING THE PARSE TREE (CONT’D)

Node* Statement() {

Node* current;

switch(t) {

case SEMICOLON: /* ; */

t = gettoken();

return new Node(EMPTY);

break;

case VAR: /* <var> = <exp> */

current = new Node(ASSIGN, ...);

current.addChild(VAR, ...);

t = gettoken();

MustBe(EQ);

current.addChild(Expression());

MustBe(SEMICOLON);

break;

case IF: /* if (<expr>) <statement> else <statement> */

current = new Node(COND, ...);

/* ... */

}

return current;

}
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RECURSIVE DESCENT PARSING: LEFT FACTORING

Not all grammars are suitable for recursive descent:

⟨stmt⟩ ::= ε

| VAR := ⟨exp⟩
| IF ⟨exp⟩ THEN ⟨stmt⟩ ELSE ⟨stmt⟩
| WHILE ⟨exp⟩ DO ⟨stmt⟩
| BEGIN ⟨seq⟩ END

⟨seq⟩ ::= ⟨stmt⟩ | ⟨stmt⟩ ; ⟨seq⟩

Both rules for ⟨seq⟩ begin with the same nonterminal
Impossible to decide which one to apply based only on the next token
Fortunately concatenation is distributive over union so we can fix the
grammar (left factoring):

⟨seq⟩ ::= ⟨stmt⟩ ⟨seqTail⟩
⟨seqTail⟩ ::= ε | ; ⟨seq⟩
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RECURSIVE DESCENT PARSING: AMBIGUITY

Some programming constructs are inherently ambiguous

⟨stmt⟩ ::= if ( ⟨exp⟩ ) ⟨stmt⟩
| if ( ⟨exp⟩ ) ⟨stmt⟩ else ⟨stmt⟩

Solution: choose one path and stick to it (e.g., match the else-statement
with the nearest else-less if statement)
case IF:

t = gettoken();

MustBe(OPEN_PAREN);

Expression();

MustBe(CLS_PAREN);

Statement();

if (t == ELSE) {

t = gettoken();

Statement();

}
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RECURSIVE DESCENT PARSING: CLOSURE, ETC.
Any left recursion in the grammar will cause the parser to go into an
infinite loop:

⟨exp⟩ ::= ⟨exp⟩ ⟨addop⟩ ⟨term⟩ | ⟨term⟩
Solution: eliminate left recursion using a closure

⟨exp⟩ ::= ⟨term⟩ ⟨closure⟩
⟨closure⟩ ::= ε

| ⟨addop⟩ ⟨term⟩ ⟨closure⟩

Not the same language theoretically, but differences not relevant in practice
This being said, some languages are simply not parseable using
recursive descent

⟨palindrome⟩ ::= ε | 0 | 1 | 0 ⟨palindrome⟩ 0 | 1 ⟨palindrome⟩ 1

No way to know when to choose the ε rule
No way to choose between the second and the fourth rule
No way to choose between the third and the fifth rule
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RECURSIVE DESCENT PARSING: SUFFICIENT

CONDITIONS

first(α) = set of all initial tokens in the strings derivable from α

follow(⟨N⟩) = set of all initial tokens in nonempty strings that may follow
⟨N⟩ (possibly including EOS)
Sufficient conditions for a grammar to allow recursive descent parsing:

For ⟨N⟩ ::= α1 | α2 | . . . | αn must have first(αi) ∩ first(αj) = ∅,
1 ≤ i < j ≤ n
Whenever ⟨N⟩ ⇒∗ ε must have follow(⟨N⟩) ∩ first(⟨N⟩) = ∅

Grammars that do not have these properties may be fixable using left
factoring, closure, etc.

Method for constructing the recursive descent function N() for the
nonterminal ⟨N⟩ with rules ⟨N⟩ ::= α1 | α2 | . . . | αn:

1 For αi ̸= ε apply the rewriting rule ⟨N⟩ ::= αi whenever the next token in the
input is in FIRST(αi)

2 For αi = ε apply the rewriting rule ⟨N⟩ ::= αi (that is, ⟨N⟩ ::= ε) whenever
the next token in the input is in FOLLOW(⟨N⟩)

3 Signal a syntax error in all the other cases
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SCANNING AND PARSING

Steps to parse a programming language:
Construct a scanner

Express the lexical structure of the language as regular expressions
Convert those regular expressions into a finite automaton (can be
automated) = the scanner

Construct a parser
Express the syntax of the language as a context-free grammar
Adjust the grammar so that it is suitable for recursive descent
Construct the recursive descent parser for the grammar (can be automated)
= the parser

Run the parser on a particular program
This implies calls to the scanner to obtain the tokens
The result is a parse tree, that will be used in the subsequent steps of the
compilation process
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