
CS 406: Compilers and Interpreters

Stefan D. Bruda

Winter 2016



CS 406: COMPILERS AND INTERPRETERS

Coordinates:
Course Web page:

http://cs.ubishops.ca/home/cs406
Instructor: Stefan Bruda
(http://bruda.ca, stefan@bruda.ca, Johnson 114B, ext. 2374)
Office hours?

Textbook (required): C. N. Fischer, R. K. Cytron, and R. J. LeBlanc Jr,
Crafting a Compiler, Addison Wesley, 2009.

CS 406 (S. D. Bruda) Winter 2016 1 / 6



COMPILATION AND INTERPRETATION

Pure compilation: The compiler translates the high-level source program
into an equivalent target program (typically in machine language), then
goes away:

CompilerSource program Target program

Target programInput Output

Pure interpretation: The interpreter stays around for the execution of the
program and becomes the locus of control during execution

Interpreter
Source program

Input
Output

Compilation followed by interpretation:

CompilerSource program Intermediate program

Virtual machine
Intermediate program

Input
Output

CS 406 (S. D. Bruda) Winter 2016 2 / 6



COMPILATION AND INTERPRETATION (CONT’D)

Interpretation offers greater flexibility and better diagnostics, but
compilation offers better performance
Compilation does not have to produce machine language for some
hardware

Compilation = translation from one language into another
Some compilers produce nothing but virtual instructions (Pascal P-code,
Java byte code, Microsoft COM+)

Compilation possibly preceded by a preprocessor

CS 406 (S. D. Bruda) Winter 2016 3 / 6



COMPILATION WORKFLOW

For languages that compile to executable code:

Preprocessor

Compiler

Assembler

Linker

Source code

Modified source code

Assembly language

Object code

Executable code

Libraries

For languages that run on a virtual machine: the assembler and linker
part are replaced by an interpreter (or virtual machine)

CS 406 (S. D. Bruda) Winter 2016 4 / 6



PHASES OF COMPILATION

Scanner (lexical analysis)

Parser (syntax analysis)

Semantic analysis

Intermediate code optimization

Target code generation

Target code optimization

Symbol table

Character stream

Token stream

Parse tree

Abstract syntax tree

Modified intermediate form

Target language

Modified target language

Scanner: divides program into
“tokens” (smallest meaningful
units)

Driven by regular expressions

Parser: discovers the syntactic
structure of a program

Driven by context-free grammar

Semantic analysis: discovers the
meaning of the program

Static analysis
Some other things can only be
figured out at run time

Intermediate form: tree-like
structure and/or some
machine-like language (but
machine independent)

Often a form of machine
language, but for an idealized
machine

CS 406 (S. D. Bruda) Winter 2016 5 / 6



PHASES OF COMPILATION (CONT’D)

Intermediate code optimization: produce code that does the same thing,
only faster

Algorithmic optimization

Code generation: produces assembly language for the target machine
Code optimization: machine-specific optimizations (use of special
instructions or addressing modes, reorder instruction to improve the load
on superscallar architectures, etc.)

Symbol table: all phases rely on a symbol table that keeps track of all the
identifiers in the program and what the compiler knows about them

This symbol table may be retained (in some form) even after compilation has
completed, for use by a debugger

CS 406 (S. D. Bruda) Winter 2016 6 / 6


