CS 406: Compilers and Interpreters

Stefan D. Bruda

Winter 2016



CS 406: COMPILERS AND INTERPRETERS

@ Coordinates:

o Course Web page:

http://cs.ubishops.ca/home/cs406
@ Instructor: Stefan Bruda
(http://bruda.ca, stefan@bruda.ca, Johnson 114B, ext. 2374)

e Office hours?

@ Textbook (required): C. N. Fischer, R. K. Cytron, and R. J. LeBlanc Jr,
Crafting a Compiler, Addison Wesley, 2009.

CS 406 (S. D. Bruda) Winter 2016 1/6



COMPILATION AND INTERPRETATION

@ Pure compilation: The compiler translates the high-level source program
into an equivalent target program (typically in machine language), then
goes away:

Source program Target program
Input Target program Output

@ Pure interpretation: The interpreter stays around for the execution of the
program and becomes the locus of control during execution

Source program
prog Interpreter Output
Input

@ Compilation followed by interpretation:

Source program Intermediate program

Intermediate program - -
Virtual machine Output
Input

CS 406 (S. D. Bruda) Winter 2016 2/6



COMPILATION AND INTERPRETATION (CONT'D)

@ Interpretation offers greater flexibility and better diagnostics, but
compilation offers better performance

@ Compilation does not have to produce machine language for some
hardware

o Compilation = translation from one language into another
@ Some compilers produce nothing but virtual instructions (Pascal P-code,
Java byte code, Microsoft COM+)

@ Compilation possibly preceded by a preprocessor

CS 406 (S. D. Bruda) Winter 2016 3/6



COMPILATION WORKFLOW

@ For languages that compile to executable code:

Source code

Preprocessor

Modified source code

Assembly language
Object code Libraries

Executable code

@ For languages that run on a virtual machine: the assembler and linker
part are replaced by an interpreter (or virtual machine)

CS 406 (S. D. Bruda) Winter 2016 4/6



PHASES OF COMPILATION

Character stream

Scanner (lexical analysis)

|

Token stream
Parser (syntax analysis)

Parse tree

I

Semantic analysis

Abstract syntax tree

jﬂtermediate code optimizatiorD

Modified intermediate form

Target code generation
Target language

Target code optimization

Symbol table

l

Modified target language

CS 406 (S. D. Bruda)

@ Scanner: divides program into

“tokens” (smallest meaningful
units)
e Driven by regular expressions

Parser: discovers the syntactic
structure of a program

o Driven by context-free grammar

Semantic analysis: discovers the
meaning of the program
e Static analysis
@ Some other things can only be
figured out at run time

Intermediate form: tree-like
structure and/or some
machine-like language (but
machine independent)
e Often a form of machine
language, but for an idealized
machine

Winter 2016 5/6



PHASES OF COMPILATION (CONT'D)

@ Intermediate code optimization: produce code that does the same thing,
only faster

o Algorithmic optimization
@ Code generation: produces assembly language for the target machine
@ Code optimization: machine-specific optimizations (use of special
instructions or addressing modes, reorder instruction to improve the load
on superscallar architectures, etc.)

@ Symbol table: all phases rely on a symbol table that keeps track of all the
identifiers in the program and what the compiler knows about them

e This symbol table may be retained (in some form) even after compilation has
completed, for use by a debugger

CS 406 (S. D. Bruda) Winter 2016 6/6



