CS 406: Bottom-Up Parsing

Stefan D. Bruda

Winter 2016

BOTTOM-UP PUSH-DOWN AUTOMATA

- A different way to construct a push-down automaton equivalent to a given grammar = shift-reduce parser:
- Given $G = (N, \Sigma, S, R)$ construct the push-down automaton $M = (\{p, q\}, \Sigma, N | \Sigma, \Delta, s, \{q\})$ with Δ containing exactly all the transitions:

$$\begin{array}{lll} \text{shift} & \forall \ a \in \Sigma: & ((p,a,\varepsilon),(p,a)) \\ \text{reduce} & \forall \ A::= \ \alpha \in R: & ((p,\varepsilon,\alpha^\mathbb{R}),(p,A)) \\ \text{done} & & ((p,\varepsilon,\mathcal{S}),(q,\varepsilon)) \end{array}$$

Left-to-right traversal of the input + rightmost derivation!

• Just as nondeterministic as the previous construction!

BOTTOM-UP PUSH-DOWN AUTOMATA

- A different way to construct a push-down automaton equivalent to a given grammar = shift-reduce parser:
- Given $G = (N, \Sigma, S, R)$ construct the push-down automaton $M = (\{p, q\}, \Sigma, N | \Sigma, \Delta, s, \{q\})$ with Δ containing exactly all the transitions:

$$\begin{array}{ll} \text{shift} & \forall \, a \in \Sigma : \quad ((p,a,\varepsilon),(p,a)) \\ \text{reduce} & \forall \, A \, ::= \, \alpha \in R : \quad ((p,\varepsilon,\alpha^\mathbb{R}),(p,A)) \\ \text{done} & \qquad ((p,\varepsilon,S),(q,\varepsilon)) \end{array}$$

Left-to-right traversal of the input + rightmost derivation!

- Just as nondeterministic as the previous construction!
 - Shift/reduce conflict: when to shift and when to reduce?
 - Establish a precedence relation (lookahead table) $P \subseteq (N|\Sigma) \times \Sigma$
 - If $(stack-top, input) \in P$ then we reduce, else we shift

BOTTOM-UP PUSH-DOWN AUTOMATA

- A different way to construct a push-down automaton equivalent to a given grammar = shift-reduce parser:
- Given $G = (N, \Sigma, S, R)$ construct the push-down automaton $M = (\{p, q\}, \Sigma, N | \Sigma, \Delta, s, \{q\})$ with Δ containing exactly all the transitions:

$$\begin{array}{ll} \text{shift} & \forall \, a \in \Sigma : \quad ((p,a,\varepsilon),(p,a)) \\ \text{reduce} & \forall \, A \, ::= \, \alpha \in R : \quad ((p,\varepsilon,\alpha^\mathbb{R}),(p,A)) \\ \text{done} & ((p,\varepsilon,\mathcal{S}),(q,\varepsilon)) \end{array}$$

Left-to-right traversal of the input + rightmost derivation!

- Just as nondeterministic as the previous construction!
 - Shift/reduce conflict: when to shift and when to reduce?
 - Establish a precedence relation (lookahead table) $P \subseteq (N|\Sigma) \times \Sigma$
 - If (stack-top, input) ∈ P then we reduce, else we shift
 - Reduce/reduce conflict: when we reduce, with what rule we reduce?
 - Use the logest rule = greedy (eat up the longest stack top)
 - We thus obtain an LR parser

EXAMPLE OR LR PARSING

$\langle E \rangle ::= \langle E \rangle + \langle T \rangle$	<i>P</i> () <i>y</i>	+	*	\$		
$\langle E \rangle$::= $\langle T \rangle$	(Input
$\langle T \rangle ::= \langle T \rangle * \langle F \rangle$)	\checkmark	\checkmark	\checkmark	\checkmark		y + y * y \$
$\langle T \rangle ::= \langle F \rangle$	y	\checkmark	\checkmark	\checkmark	\checkmark	shift	+ y * y \$
$\langle F \rangle ::= (\langle E \rangle)$	+					red	+ y * y \$
$\langle F \rangle$::= y	*					red	+ y * y \$
	⟨E⟩					red	+ y * y \$
	$\langle T \rangle$	\checkmark	\checkmark		\checkmark	shift	y * y \$
	⟨F⟩	\checkmark	\checkmark	\checkmark	\checkmark	shift	* y \$
						red	* y \$
						red	* y \$
$(p,a,\varepsilon),$	(p, a)). a e	[{+. :	* .(.). v}	shift	у\$
$((p, \varepsilon, \langle T \rangle + \langle E \rangle),$	$(p,\langle E \rangle)$		- () -	()	,,,,	shift	\$
$(p,\varepsilon,\langle 1 \rangle + \langle 2 \rangle),$	$(p, \langle E \rangle)$					red	\$
$((p,\varepsilon,\langleF\rangle*\langleT\rangle),$	$(p, \langle T \rangle)$	(g-red	\$ \$ \$
$(p,\varepsilon,\langle F\rangle),$	$(p, \langle T \rangle)$	(g-red	\$
$(p,\varepsilon,\langle I/\rangle),$	$(p,\langle F \rangle)$					done	\$
(p,ε,y) (p,ε,y) $(p,\varepsilon,\langle E \rangle)$	$(p,\langle F \rangle)$ $(p,\langle F \rangle)$,				red = reduce (u g-red = greedy	unambiguous) reduce (longest rule)
(P, c, \-/)	(7,0)	,					

	Input	Stack
	y + y * y \$	\$
shift	+ y * y \$	у \$
red	+ y * y \$	⟨F⟩ \$
red	+ y * y \$	⟨T⟩ \$
red	+ y * y \$	⟨E⟩ \$
shift	y * y \$	+ 〈E〉\$
shift	* y \$	y + 〈E〉\$
red	* y \$	$\langle F \rangle + \langle E \rangle \$$
red	* y \$	$\langle T \rangle + \langle E \rangle \$$
shift	у\$	* \langle T \rangle + \langle E \rangle \$
shift	\$	$y * \langle T \rangle + \langle E \rangle \$$
red	\$	$\langle F \rangle * \langle T \rangle + \langle E \rangle $ \$
g-red	\$	$\langle T \rangle + \langle E \rangle \$$
g-red	\$ \$	⟨E⟩ \$
done	\$	\$
rod - roduco	(unambiguous)	·

A FIRST LR PARSING ALGORITHM


```
function LRPARSER(G = (N, \Sigma, S, R), PrecTable:(N|\Sigma) \times \Sigma):
    Push(Advance())
    accepted ← False
    while not accepted do
         if TOP()TOP() = S$ and PEEK() = $ then
             else
             action \leftarrow PrecTable[Top()][Peek()]
             if action = shift then
               Push(Advance())
             else if action = reduce A ::= x_1 ... x_m then
                  for i = m down to 1 do
                   | Pop(x_i)|
                  Push(A)
             else
                  ERROR("Syntax error")
                  accepted ← True
                   \{((p, a, \varepsilon), (p, a)) : a \in \Sigma\}
                   \{((p,\varepsilon,\alpha^{\mathbb{R}}),(p,A)):A::=\alpha\in R\}
```

 $\{((p,\varepsilon,S),(q,\varepsilon))\}$

- Stack operations: PUSH(), POP(), TOP()
- Operations on the input stream: ADVANCE() (returns the next token and consume it), PEEK() (returns the next token but does not consume it)

A PRACTICAL *LR* PARSING ALGORITHM

- PREPEND() pushes one symbol at the beginning of the input stream
- Each time ⟨A⟩ ::= w is used the prefix w of the current input string is replaced by ⟨A⟩
 - Handle = a sequence of symbols that will be next replaced by a reduction
 - The tokens are shifted on the stack until a handle appears
 - When a handle appears, it is reduced

PARSE TABLE EXAMPLE

$$\langle st \rangle ::= \langle S \rangle$$
 (1)

$$\langle S \rangle$$
 ::= $\langle A \rangle \langle C \rangle$ (2)

$$\langle \mathsf{C} \rangle ::= c$$
 (3)

$$\mid \quad \varepsilon \qquad \qquad$$
 (4)

$$\langle A \rangle ::= a \langle B \rangle \langle C \rangle d (5)$$

$$| \langle B \rangle \langle Q \rangle$$
 (6)

$$\langle \mathsf{B} \rangle ::= b \langle \mathsf{B} \rangle$$
 (7)

$$\mid \quad \varepsilon$$
 (8)

$$\langle Q \rangle ::= q$$
 (9)

$$| \quad \varepsilon$$
 (10)

State	а	b	C	d	q	\$	⟨st⟩	(S)	$\langle A \rangle$	$\langle B \rangle$	$\langle C \rangle$	$\langle Q \rangle$
0	3	2	8		8	8	accept	4	1	5		
1			11			4					14	
2		2	8	8	8	8				13		
3		2	8	8						9		
4		_				8						
5			10		7	10						6
6			6			6						
6 7			9			6 9						
8						1						
9			11	4							10	
10				12								
11				3		3						
12			5 7			3 5 7						
13			7	7	7							
14						2						

LR PARSING EXAMPLE

Action	Input	Stack
	abbdc\$	0
shift 3	bbdc\$	3,0
shift 2	bdc\$	2,3,0
shift 2	dc\$	2,2,3,0
reduce 8	⟨B⟩ <i>dc</i> \$	2,2,3,0
shift 13	dc\$	13,2,2,3,0
reduce 7	⟨B⟩ <i>dc</i> \$	2,3,0
shift 13	dc\$	13,2,3,0
reduce 7	⟨B⟩ <i>dc</i> \$	3,0
shift 9	` dc\$	9,3,0
reduce 4	⟨C⟩ <i>dc</i> \$	9,3,0
shift 10	dc\$	10,9,3,0
shift 12	c\$	12,10,9,3,0
reduce 5	⟨A⟩ <i>c</i> \$	0
shift 1	`´c\$	1,0
shift 11	\$	11,1,0
reduce 3	$\langle C \rangle \$$	1,0
shift 14	` '\$	14,1,0
reduce 2	⟨S⟩\$	0
shift 4	\$	4,0
shift 8	\$	8,4,0
reduce 1	⟨st⟩\$,0
accept	, , ,	

$\langle \mathrm{st} \rangle$::=	⟨S⟩ \$	(1)
$\langle S \rangle$::=	$\langle A \rangle \ \langle C \rangle$	(2)
$\langle C \rangle$::=	С	(3)
		ε	(4)
$\langle A \rangle$::=	$a \langle B \rangle \langle C \rangle d$	(5)
		$\langle B \rangle \ \langle Q \rangle$	(6)
$\langle B \rangle$::=	b ⟨B⟩	(7)
		ε	(8)
$\langle Q \rangle$::=	q	(9)
		ε	(10)

CONFLICT RESOLUTION BASICS

 Some shift/reduce conflicts can be resolved by assigning precedence and associativity to tokens

$$\langle \exp \rangle ::= \langle \exp \rangle + \langle \exp \rangle | \langle \exp \rangle * \langle \exp \rangle | (\langle \exp \rangle) | id$$

CONFLICT RESOLUTION BASICS

 Some shift/reduce conflicts can be resolved by assigning precedence and associativity to tokens

$$\langle \exp \rangle ::= \langle \exp \rangle + \langle \exp \rangle | \langle \exp \rangle * \langle \exp \rangle | (\langle \exp \rangle) | id$$

Suppose that a LR parser reaches the following configuration:

$$\begin{array}{c|cc} \hline \text{Input} & \text{Stack} & \text{Prefix} \\ \hline * \textit{id} \$ & 7,4,1,0 & \langle \exp \rangle + \langle \exp \rangle \end{array}$$

- If * takes precedence over + then we must shift *
- If + takes precedence over * then we must reduce $\langle \exp \rangle + \langle \exp \rangle$ to $\langle \exp \rangle$

CONFLICT RESOLUTION BASICS

 Some shift/reduce conflicts can be resolved by assigning precedence and associativity to tokens

$$\langle \exp \rangle ::= \langle \exp \rangle + \langle \exp \rangle | \langle \exp \rangle * \langle \exp \rangle | (\langle \exp \rangle) | id$$

Suppose that a LR parser reaches the following configuration:

- If * takes precedence over + then we must shift *
- If + takes precedence over * then we must reduce $\langle \exp \rangle + \langle \exp \rangle$ to $\langle \exp \rangle$
- Suppose that a LR parser reaches the following configuration:

Input Stack Prefix
$$+ id \$ 7,4,1,0 \langle \exp \rangle + \langle \exp \rangle$$

If + is left-associative then we reduce, else we shift

CONFLICT RESOLUTION BASICS (CONT'D)

 Reduce/reduce conflicts become essentially shift/reduce conflicts in an LR parser

```
\langle stmt \rangle ::= if e then \langle stmt \rangle else \langle stmt \rangle | if e then \langle stmt \rangle | other
```

Suppose that a LR parser reaches the following configuration:

Input	Stack	Prefix
else other \$	9,4,8,5,3,1,0	if e if e then other

- If we shift then the else branch will belong to the inner if
- If we reduce then the else branch will belong to the outer if

CONFLICT RESOLUTION BASICS (CONT'D)

 Reduce/reduce conflicts become essentially shift/reduce conflicts in an LR parser

```
\langle stmt \rangle ::= if e then \langle stmt \rangle else \langle stmt \rangle | if e then \langle stmt \rangle | other
```

Suppose that a LR parser reaches the following configuration:

Input	Stack	Prefix
else other \$	9,4,8,5,3,1,0	if e if e then other

- If we shift then the else branch will belong to the inner if
- If we reduce then the else branch will belong to the outer if
- ullet Usual strategy is greedy (reduce with the longest rule) \to the shift/reduce conflict is resolved in favor of shifting

LR(k) Parsing Definitions and Notations

- An LR(k) parser can look ahead at the next k tokens in the input (plus the top of the stack)
- At any given time it can either reduce the current handler on the stack (reduce) or add to the handler (shift)
 - The decision is based on the symbols already shifted (left context) and the next k lookahead symbols (right context)
 - Driven by an LR algorithm + parse (lookahead) table
 - Every entry in the parse table can accommodate at most one item → an LR parser is deterministic
 - Confusing notation: LR(0) and LR(1) parsers both look ahead at the next input token
 - The 0 in LR(0) refers to the lookahead used in constructing the parse table
- LR(k) parsers for k ≥ 2 have huge parse tables and so are not in wide use

LR(k) Grammars

- Notation: FIRST_k(w) = { $p \in \Sigma^* : w \Rightarrow^* pu, |p| = k, u \in (N|\Sigma)^*$ }
- A grammar is LR(k) iff it is possible to construct a LR(k) table for that grammar
- Formally, a grammar $(N, \Sigma, \langle S \rangle, R)$ is LR(k) iff the following conditions imply $\alpha \langle A \rangle z = \gamma \langle B \rangle x$:

 - \bigcirc FIRST_k(w) = FIRST_k(y)

LR(k) GRAMMARS

- Notation: FIRST_k(w) = { $p \in \Sigma^* : w \Rightarrow^* pu, |p| = k, u \in (N|\Sigma)^*$ }
- A grammar is LR(k) iff it is possible to construct a LR(k) table for that grammar
- Formally, a grammar $(N, \Sigma, \langle S \rangle, R)$ is LR(k) iff the following conditions imply $\alpha \langle A \rangle z = \gamma \langle B \rangle x$:
- Suppose we already have $\alpha\beta$ as the current handle and w as remaining input; should we reduce using $\langle A \rangle := \beta$?
 - We can decide by looking at $FIRST_k(w)$
 - In LR(k) parsing we can thus always determine the correct reduction by looking at the left context and the next k tokens in the input

LR(0) TABLE CONSTRUCTION

- An LR(0) table is constructed based on exploring the state space of the parser
 - The state space is finite so the algorithms takes finite time
 - May or may not succeed in constructing a table (with one entry per cell)
 - If the construction does not succeed then inadequate states (which lack sufficient information to have unique entries) are identified
- States represent sets of *LR*(0) items (or just items)
- An item for a Grammar G is a rule of G with a marker (or bookmark) at some position in the right hand side.
 - The rule $\langle A \rangle ::= XYZ$ yields the following four items:

$$\langle \mathsf{A} \rangle ::= \bullet \mathsf{X} \mathsf{Y} \mathsf{Z} \quad \langle \mathsf{A} \rangle ::= \mathsf{X} \bullet \mathsf{Y} \mathsf{Z} \quad \langle \mathsf{A} \rangle ::= \mathsf{X} \mathsf{Y} \bullet \mathsf{Z} \quad \langle \mathsf{A} \rangle ::= \mathsf{X} \mathsf{Y} \mathsf{Z} \bullet$$

- The rule $\langle A \rangle ::= \varepsilon$ generates a single item: $\langle A \rangle ::= \bullet$
- Intuitively, an item indicates how much of the rule has been seen so far in the input
- Canonical LR(0) collections are sets of items and provide the basis for the construction of the LR(0) finite automaton

LR(0) AUTOMATON: ESSENTIAL ALGORITHMS


```
function CLOSURE(I: set of items) returns set of items:
     ans \leftarrow 1
     repeat
          prev ← ans
          foreach rule A ::= \alpha \bullet B\gamma do
                foreach rule B ::= w do
                     ans \leftarrow ans \cup \{B ::= \bullet w\}
     until ans = prev:
     return ans
function GoTo(I: set of items, X \in N|\Sigma) returns set of items:
     ans \leftarrow \emptyset
     foreach rule A := \alpha \bullet X\gamma do
          ans \leftarrow ans \cup \{A ::= \alpha X \bullet \gamma\}
     return CLOSURE(ans)
```

- $A ::= \alpha \bullet B\gamma$ being in CLOSURE(I) means that at some point during parsing we might see next a substring derivable from $B\gamma$
- If so, then this substring will have a prefix derivable from B
- GoTo is then used to define the transitions of the LR(0) automaton

Constructing the LR(0) Automaton


```
function LR0AUTOMATON(G = (N, \Sigma, S, R)) returns finite automaton:
     start \leftarrow CLOSURE(\{S ::= \bullet w \in R\})
     states \leftarrow \{start\}
     transitions \leftarrow \emptyset
     repeat
          grow ← False
          foreach I \in states do
                foreach X \in N \mid \Sigma do
                     next \leftarrow GoTo(I, X)
                     if next \neq \emptyset then
                           transitions \leftarrow transitions \cup \{I \xrightarrow{X} next\}
                           if next ∉ states then
                                states \leftarrow states \cup \{next\}
                                arow ← True
     until grow:
     accepting \leftarrow \{X \in states : A ::= u \bullet \in X\}
                finite automaton with initial state start, states states,
                transitions transitions, and accepting states accepting
```

 Note in passing that the whole construction is similar to the one that constructs a deterministic finite automaton out of a nondeterministic one

Example of LR(0) Automaton

Using the LR(0) Automaton: Shift Actions

- Suppose that the string γ takes the automaton from state 0 to state j
- When the next input symbol is a we shift iff state j has an outgoing transition labeled a
 - Example: the previous LR(0) automaton generates the following table:

Using the LR(0) Automaton: Reduce Actions

- Suppose that the string γ takes the automaton from state 0 to state j
- When the next input symbol is a we shift iff state j has an outgoing transition labeled a

Using the LR(0) Automaton: Reduce Actions

- Suppose that the string γ takes the automaton from state 0 to state j
- When the next input symbol is a we shift iff state j has an outgoing transition labeled a
- Otherwise we reduce
 - The items in state *j* tell us what rules to use for this purpose
 - Reductions can only happen in the final states, which contain reducible items that is, items of form A ::= w•
 - For each reducible item we reduce with the corresponding rule for the whole state line in the table
 - Can result in shift/reduce conflicts whenever some cells on a line already contain shift entries
 - Can result in reduce/reduce conflicts whenever some state contains more than one reducible item

LR(0) PARSE TABLE EXAMPLE

State	+	*	()	id	\$	$\langle E' \rangle$	$\langle E \rangle$	$\langle T \rangle$	$\langle F \rangle$
0			4		5			1	2	3
1	1, 6	1	1	1	1	1, accept	1	1	1	1
2	3	3, 7	3	3	3	3	3	3	3	3
3	5	5	5	5	5	5	5	5	5	5
4			4		5			8	2	
5	7	7	7	7	7	7	7	7	7	7
6			4		5				9	3
7			4		5					10
8	6			11						
9	2	2, 7	2	2	2	2	2	2	2	2
10	4	4	4	4	4	4	4	4	4	4
11	6	6	6	6	6	6	6	6	6	6

LR(0) PARSE TABLE EXAMPLE

State	+	*	()	id	\$	$\langle E' \rangle$	$\langle E \rangle$	$\langle T \rangle$	$\langle F \rangle$
0			4		5			1	2	3
1	1, 6	1	1	1	1	1, accept	1	1	1	1
2	3	3, 7	3	3	3	3	3	3	3	3
3	5	5	5	5	5	5	5	5	5	5
4			4		5			8	2	
5	7	7	7	7	7	7	7	7	7	7
6			4		5				9	3
7			4		5					10
8	6			11						
9	2	2, 7	2	2	2	2	2	2	2	2
10	4	4	4	4	4	4	4	4	4	4
11	6	6	6	6	6	6	6	6	6	6

Three shift/reduce conflicts but no reduce/reduce conflict