CS 406: Bottom-Up Parsing

Stefan D. Bruda

Winter 2016

BoTTOM-UP PUSH-DOWN AUTOMATA

@ A different way to construct a push-down automaton equivalent to a given
grammar = shift-reduce parser:

@ Given G = (N, %, S, R) construct the push-down automaton
M= ({p,q},L,N|Z, A, s,{qg}) with A containing exactly all the

transitions:
shift Vaex: ((p,ace),(p,a)
reduce VA := aeR: ((pe a®) (p,A))
done ((p,,5).(q.¢))

Left-to-right traversal of the input + rightmost derivation!
@ Just as nondeterministic as the previous construction!

CS 406: Bottom-Up Parsing (S. D. Bruda) Winter 2016 1/17

BoTTOM-UP PUSH-DOWN AUTOMATA

@ A different way to construct a push-down automaton equivalent to a given
grammar = shift-reduce parser:

@ Given G = (N, %, S, R) construct the push-down automaton
M= ({p,q},L,N|Z, A, s,{qg}) with A containing exactly all the

transitions:
shift Vaex: ((p,ace),(p,a)
reduce VA := aeR: ((pe a®) (p,A))
done ((p,,5).(q.¢))

Left-to-right traversal of the input + rightmost derivation!

@ Just as nondeterministic as the previous construction!
e Shift/reduce conflict: when to shift and when to reduce?

@ Establish a precedence relation (lookahead table) P C (N|X) x ©
o |f (stack-top, input) € P then we reduce, else we shift

CS 406: Bottom-Up Parsing (S. D. Bruda) Winter 2016 1/17

BoTTOM-UP PUSH-DOWN AUTOMATA

@ A different way to construct a push-down automaton equivalent to a given
grammar = shift-reduce parser:

@ Given G = (N, %, S, R) construct the push-down automaton
M= ({p,q},L,N|Z, A, s,{qg}) with A containing exactly all the

transitions:
shift Vaex: ((p,ace),(p,a)
reduce VA := aeR: ((pe a®) (p,A))
done ((p,,5).(q.¢))

Left-to-right traversal of the input + rightmost derivation!
@ Just as nondeterministic as the previous construction!
e Shift/reduce conflict: when to shift and when to reduce?

@ Establish a precedence relation (lookahead table) P C (N|X) x ©
o |f (stack-top, input) € P then we reduce, else we shift

o Reduce/reduce conflict: when we reduce, with what rule we reduce?
@ Use the logest rule = greedy (eat up the longest stack top)
@ We thus obtain an LR parser

CS 406: Bottom-Up Parsing (S. D. Bruda) Winter 2016 1/17

EXAMPLE OR LR PARSING

Jaddmm
[T e T

M—M* +<——|7T

~ ~— —~—

o~ e~

shift
red
red
red
shift
shift
red
red
shift
shift
red
g-red
g-red
done

SR PO P

o~~~
m-m
—~—~—

* <

OHT
m
m
A

*

L
3
NG

P~
m4m
—_—~—~—

Py
—_— D —

~

CS 406: Bottom-Up Parsing (S. D. Bruda)

red = reduce (unambiguous)
g-red = greedy reduce (longest rule)

Winter 2016

A FIRST LR PARSING ALGORITHM

function LRPARSER(G = (N, &, S, R), PrecTable:(N|X) x X):
PusH(ADVANCE()) @
accepted «+ False
while not accepted do
if Tor()TorP() = S$ and PEEK() = $ then
| accepted «+ True
else
action < PrecTable[TOP()][PEEK()]
if action = shift then
| PusH(ADVANCE()) @
else if action = reduce A ::= xq ... xm then
L for i = mdown to 1 do
| Por(x;)

PusH(4) @

else
ERROR(“Syntax error”)
accepted + True

A = {((pv ava)v(pv a)) rae Z}
I {((p’e’aR)’ (p7 A)) 1A= ac€ R} e
| {(p.5S).(g,¢)} o

CS 406: Bottom-Up Parsing (S. D. Bruda)

@ Stack operations:
PUsH(), PoP(),
ToP()

@ Operations on the
input stream:
ADVANCE()
(returns the next
token and
consume it),
PEEK() (returns
the next token but
does not
consume it)

Winter 2016 3/17

A PRACTICAL LR PARSING ALGORITHM

function LRPARSER(G = (N, X, S, R), LRTable:(N|X) x X):
PuUsH(0)
accepted <+ False
while not accepted do
action « LRTable[TOP()][PEEK()]
if action = shift s then
PUSH(s)
if s is accepting then accepted < True
else ADVANCE()

else if action = reduce (A) ::= w then
Popr(|w|)
PREPEND((A))

else ERROR(“Syntax error”)

@ PREPEND() pushes one symbol at the beginning of the input stream
@ Eachtime (A) ::= wis used the prefix w of the current input string is
replaced by (A)
e Handle = a sequence of symbols that will be next replaced by a reduction
o The tokens are shifted on the stack until a handle appears
@ When a handle appears, it is reduced

CS 406: Bottom-Up Parsing (S. D. Bruda) Winter 2016 4/17

PARSE TABLE EXAMPLE

State | a b c d q $ (st) (S) (A) (B) (C) (Q)

(st) (S)'$) 0 8 s 8 acoent [4]
® = we @ oo ”
©) = c @ . e o

| e @]
(A) == a(B)(C)d (5 5 10 10 [e]

| B@ 6 ? : 5
® == b® O . .

| e (8) 10
@ == gq) 2 5 5

|« (10) N T T

CS 406: Bottom-Up Parsing (S. D. Bruda) Winter 2016 5/17

LR PARSING EXAMPLE

Action Input Stack
abbdc$ 0
shift 3 bbdc$ 3,0
shift 2 bdc$ 2,3,0
shift 2 dc$ 2,2,3,0
reduce 8 (B)dc$ 2,2,3,0
shift 13 dc$ 13,2,2,3,0
reduce 7 (B)dc$ 2,3,0
shift 13 dc$ 13,2,3,0
reduce 7 (B)dc$ 3,0
shift 9 dc$ 9,3,0
reduce 4 (C)dc$ 9,3,0
shift 10 dc$ 10,9,3,0
shift 12 c$ 12,10,9,3,0
reduce 5 (A)c$ 0
shift 1 c$ 1,0
shift 11 $ 11,1,0
reduce 3 (C)$ 1,0
shift 14 $ 14,1,0
reduce 2 (S)$ 0
shift 4 $ 4,0
shift 8 $ 8,4,0
reduce 1 (st)$ 0
accept

CS 406: Bottom-Up Parsing (S. D. Bruda)

>0
~
o

—_ m
C I
TT
PP
)
Q.

C

n Q 0 o

Winter 2016

~

N

~ N~~~ o~~~ —~
o) o O
RN NN RS IR S BN

6/17

CONFLICT RESOLUTION BASIcS

@ Some shift/reduce conflicts can be resolved by assigning precedence
and associativity to tokens

(exp) == (exp) + (exp) | (exp) * (exp) | ((exp)) |id

CS 406: Bottom-Up Parsing (S. D. Bruda) Winter 2016 7117

CONFLICT RESOLUTION BASIcS

@ Some shift/reduce conflicts can be resolved by assigning precedence
and associativity to tokens

(exp) == (exp) + (exp) | (exp) * (exp) | ((exp)) |id

@ Suppose that a LR parser reaches the following configuration:
Input Stack Prefix
«id$ 7,4,1,0 (exp)+ (exp)
o If x takes precedence over + then we must shift
o If + takes precedence over x then we must reduce (exp) + (exp) to (exp)

CS 406: Bottom-Up Parsing (S. D. Bruda) Winter 2016 7/17

CONFLICT RESOLUTION BASIcS

@ Some shift/reduce conflicts can be resolved by assigning precedence
and associativity to tokens

(exp) == (exp) + (exp) | (exp) * (exp) | ((exp)) |id

Suppose that a LR parser reaches the following configuration:
Input Stack Prefix
«id$ 7,4,1,0 (exp)+ (exp)
If « takes precedence over + then we must shift =
If + takes precedence over x then we must reduce (exp) + (exp) to (exp)

Suppose that a LR parser reaches the following configuration:
Input Stack Prefix
+id$ 7,4,1,0 (exp)—+ (exp)
If + is left-associative then we reduce, else we shift

CS 406: Bottom-Up Parsing (S. D. Bruda) Winter 2016 7/17

CONFLICT RESOLUTION BASICS (CONT’'D)

@ Reduce/reduce conflicts become essentially shift/reduce conflicts in an
LR parser

(stmt) ::= if e then (stmt) else (stmt) | if e then (stmt) | other

@ Suppose that a LR parser reaches the following configuration:
Input Stack Prefix
else other$ 9,4,8,5,3,1,0 if eif e then other

o If we shift then the else branch will belong to the inner if
o If we reduce then the else branch will belong to the outer if

CS 406: Bottom-Up Parsing (S. D. Bruda) Winter 2016 8/17

CONFLICT RESOLUTION BASICS (CONT’'D)

@ Reduce/reduce conflicts become essentially shift/reduce conflicts in an
LR parser

(stmt) ::= if e then (stmt) else (stmt) | if e then (stmt) | other

@ Suppose that a LR parser reaches the following configuration:
Input Stack Prefix
else other$ 9,4,8,5,3,1,0 if eif e then other
o If we shift then the else branch will belong to the inner if
o If we reduce then the else branch will belong to the outer if
o Usual strategy is greedy (reduce with the longest rule) — the shift/reduce
conflict is resolved in favor of shifting

CS 406: Bottom-Up Parsing (S. D. Bruda) Winter 2016 8/17

LR(k) PARSING DEFINITIONS AND NOTATIONS

@ An LR(k) parser can look ahead at the next k tokens in the input (plus
the top of the stack)

@ At any given time it can either reduce the current handler on the stack
(reduce) or add to the handler (shift)

e The decision is based on the symbols already shifted (left context) and the

next k lookahead symbols (right context)
o Driven by an LR algorithm + parse (lookahead) table

@ Every entry in the parse table can accommodate at most one item — an LR
parser is deterministic

e Confusing notation: LR(0) and LR(1) parsers both look ahead at the next
input token

@ The 0in LR(0) refers to the lookahead used in constructing the parse table

@ LR(k) parsers for k > 2 have huge parse tables and so are not in wide
use

CS 406: Bottom-Up Parsing (S. D. Bruda) Winter 2016 9/17

LR(k) GRAMMARS

@ Notation: FIRST,(w) ={pe X*: w="pu,|p| = k,u € (N|X)*}
@ A grammar is LR(k) iff it is possible to construct a LR(k) table for that
grammar
@ Formally, a grammar (N, X, (S), R) is LR(k) iff the following conditions
imply a(A)z = v(B)x:
Q (S :5* a(A)z £ apw

Q () =" 1(B)x £ gy
@ FIRSTK(w) = FIRST«(Y)

CS 406: Bottom-Up Parsing (S. D. Bruda) Winter 2016 10/17

LR(k) GRAMMARS

@ Notation: FIRST,(w) ={pe X*: w="pu,|p| = k,u € (N|X)*}
@ A grammar is LR(k) iff it is possible to construct a LR(k) table for that
grammar

@ Formally, a grammar (N, X, (S), R) is LR(k) iff the following conditions
imply a(A)z = v(B)x:
Q (5 2 a(A)z 2 apw
R
Q (S) =" 1(B)x 2 afy
@ FIRSTK(w) = FIRST«(Y)
@ Suppose we already have a3 as the current handle and w as remaining
input; should we reduce using (A) = (7
e We can decide by looking at FIRST,(w)

o In LR(k) parsing we can thus always determine the correct reduction by
looking at the left context and the next k tokens in the input

CS 406: Bottom-Up Parsing (S. D. Bruda) Winter 2016 10/17

LR(0) TABLE CONSTRUCTION

@ An LR(0) table is constructed based on exploring the state space of the
parser

o The state space is finite so the algorithms takes finite time
@ May or may not succeed in constructing a table (with one entry per cell)
o If the construction does not succeed then inadequate states (which lack
sufficient information to have unique entries) are identified
@ States represent sets of LR(0) items (or just items)

@ Anitem for a Grammar G is a rule of G with a marker (or bookmark) at
some position in the right hand side.

o The rule (A) = XYZ yields the following four items:
(A) := oXYZ (A) := XeYZ (A) := XYeZ

(A) = XYZe
o Therule (A) ::= & generates a single item: (A) = e
o Intuitively, an item indicates how much of the rule has been seen so far in the
input

@ Canonical LR(0) collections are sets of items and provide the basis for
the construction of the LR(0) finite automaton

CS 406: Bottom-Up Parsing (S. D. Bruda) Winter 2016 11/17

LR(0) AUTOMATON: ESSENTIAL ALGORITHMS

function CLOSURE(/: set of items) returns set of items:
ans « |

repeat
prev < ans

foreachrule A ::= a e Bydo
foreach rule B ::= wdo
| ans<ansU{B := ew}

until ans = prev:
L return ans

ans «
foreachrule A ::= a e X~y do
| ans<ansU{A == aXen}

| return CLOSURE(ans)

CS 406: Bottom-Up Parsing (S. D. Bruda)

function GoTo(/: set of items, X € N|X) returns set of items:

@ A = aeBybeingin
CLOSURE(/) means

that at some point
during parsing we
might see next a
substring derivable
from By

@ If so, then this

substring will have a
prefix derivable from B
@ GoTo is then used to
define the transitions of
the LR(0) automaton

Winter 2016

12/17

CONSTRUCTING THE LR(0) AUTOMATON

function LROAUTOMATON(G = (N, X, S, R)) returns finite automaton:
start + CLOSURE({S ::= ew € R})
states < {start}
transitions < ()
repeat
grow + False
foreach / € states do
foreach X € N|x do
next «+ GoTo(/, X)
if next # 0 then

transitions <+ transitions U {/ X, next}
if next ¢ states then
states < states U {next}
L grow < True

until grow:

accepting <+ {X € states: A = ue € X}

return finite automaton with initial state start, states states,
transitions transitions, and accepting states accepting

@ Note in passing that the whole construction is similar to the one that
constructs a deterministic finite automaton out of a nondeterministic one

CS 406: Bottom-Up Parsing (S. D. Bruda) Winter 2016 13/17

EXAMPLE OF LR(0) AUTOMATON

<E> <E> +(T)e
(T) == (T) & x(F)

Iy
® (€) L (Epe + D
(E) = (E) o +(T)
\ . n
= o(E) -
=R
oM (T) I
. -<T> BT (&) 2 (Tye
B = o (=M e~h
(F) := oid

(E) = <E> o (M)
(F) = (Ere)

B2

(E
(E)
(E)
(M
(T
(F)
(F)

CS 406: Bottom-Up Parsing (S. D. Bruda)

o
(T) == (T) = (F)e

USING THE LR(0) AUTOMATON: SHIFT ACTIONS

@ Suppose that the string v takes the automaton from state 0 to state j

@ When the next input symbol is a we shift iff state j has an outgoing

transition labeled a

o Example: the previous LR(0) automaton generates the following table:

State| + * () id $ (E) (E) (T) (F)
0
1 accept
2
3
:

6 9]
7
8|[6]

9

10

11

CS 406: Bottom-Up Parsing (S. D. Bruda)

Winter 2016

15/17

USING THE LR(0) AUTOMATON: REDUCE ACTIONS

@ Suppose that the string ~ takes the automaton from state 0 to state j

@ When the next input symbol is a we shift iff state j has an outgoing
transition labeled a

CS 406: Bottom-Up Parsing (S. D. Bruda) Winter 2016 16/17

USING THE LR(0) AUTOMATON: REDUCE ACTIONS

@ Suppose that the string ~ takes the automaton from state 0 to state j

@ When the next input symbol is a we shift iff state j has an outgoing
transition labeled a

@ Otherwise we reduce

The items in state j tell us what rules to use for this purpose

Reductions can only happen in the final states, which contain reducible
items that is, items of form A ::= we

For each reducible item we reduce with the corresponding rule for the whole
state line in the table

Can result in shift/reduce conflicts whenever some cells on a line already
contain shift entries

Can result in reduce/reduce conflicts whenever some state contains more
than one reducible item

CS 406: Bottom-Up Parsing (S. D. Bruda) Winter 2016 16/17

17/17

Winter 2016

(F)
1
3
5
7
3
2
4
6

(T
1
3
5

[9]
2
4
6

L - MW ~ N < ©
=
—
Q
3
o %35 ~ N < ©
- -
e 2[o] - o wlo][0]o] avo
M — - MW ~ m246
L
" —[t] - ow[s]n]¥] avo
) [~] [~]
Mim * 1]5 ~ ﬂ,46
™ o\
-
L + @35 ~ @246
(7p) —
o QO+~ NM I O~ BT
-
5 &

)

LR(0

)
°
2
(7]
a
)
=3
=
o
IS
a
o
2
=
£
°
[is]
©
o
<
»
(&}

LR(0) PARSE TABLE EXAMPLE

State| + x+ () id $ (E) (E) (T) (F)
0
101, 1 1 1 1 1, accept 1 1 1 1
2| 3 3[7] 3 3 3 3 3 3 3 3
3 5 5 5 5 5 5 5 5 5 5
4
5\ 7 7 7 7 7 7 7 7 7 7
6 9] [3
7
o/ [
9| 2 27l 2 2 2 2 2 2 2 2
100 4 4 4 4 4 4 4 4 4 4
11 6 6 6 6 6 6 6 6 6 6

Three shift/reduce conflicts but no reduce/reduce conflict

CS 406: Bottom-Up Parsing (S. D. Bruda) Winter 2016

17/17

