
CS 406: More Powerful LR Parsers

Stefan D. Bruda

Winter 2016

LR(0) AUTOMATON AND SHIFT-REDUCE DECISIONS

In state 2 we generally reduce, but we can also shift whenever the next
input token is ∗

If we look at the two items in State 2 then it is immediate we should shift
(since no other rule will eat up ∗ next)
Such a decision can be made algorithmically by looking one token ahead

+ ∗ () id $ 〈E’〉 〈E〉 〈T〉 〈F〉
0 4 5 1 2 3

1 1, 6 1 1 1 1 1, accept 1 1 1 1

2 3 3, 7 3 3 3 3 3 3 3 3
3 5 5 5 5 5 5 5 5 5 5
4 4 5 8 2
5 7 7 7 7 7 7 7 7 7 7
6 4 5 9 3

7 4 5 10

8 6 11

9 2 2, 7 2 2 2 2 2 2 2 2
10 4 4 4 4 4 4 4 4 4 4
11 6 6 6 6 6 6 6 6 6 6

〈E’〉 ::= 〈E〉 (1)
〈E〉 ::= 〈E〉 + 〈T〉 (2)
〈E〉 ::= 〈T〉 (3)
〈T〉 ::= 〈T〉 ∗ 〈F〉 (4)
〈T〉 ::= 〈F〉 (5)
〈F〉 ::= (〈E〉) (6)
〈F〉 ::= id (7)

CS 406: More Powerful LR Parsers (S. D. Bruda) Winter 2016 1 / 8

SLR PARSING

We assume an augmented grammar with the added rule 〈S’〉 ::= 〈S〉
(where 〈S〉 is the original axiom)
We begin with the LR(0) items and automaton
The decision on when to reduce to 〈A〉 are taken based on the set
FOLLOW(〈A〉)
The table is constructed using the following algorithm:

1 Construct the LR(0) automaton with states I0, . . . , In
2 Line i of the table is constructed starting from Ii , 1 ≤ i ≤ n as follows:

1 If 〈A〉 ::= α • aβ ∈ Ii , a ∈ Σ, and GOTO(Ii , a) = Ij then Action[i, a] = j (shift j)
2 If 〈A〉 ::= α• ∈ Ii then for all a ∈ FOLLOW(〈A〉) set

Action[i, a] = reduce 〈A〉 ::= α
3 If 〈S’〉 ::= 〈S〉• ∈ Ii then Action[i, $] = accept
4 Action[i, 〈A〉] for 〈A〉 ∈ N are computed as before (based on the automaton)

We thus obtain a SLR parsing table and thus an SLR parser
Technically, this is a SLR(1) parsing table/parser
If any conflicting actions result from this algorithm then the grammar is not
SLR(1)

CS 406: More Powerful LR Parsers (S. D. Bruda) Winter 2016 2 / 8

SLR TABLE EXAMPLE

State + ∗ () id $ 〈E’〉 〈E〉 〈T〉 〈F〉
0 4 5 1 2 3
1 6 accept
2 3 7 3 3
3 5 5 5 5
4 4 5 8 2
5 7 7 7 7
6 4 5 9 3
7 4 5 10
8 6 11
9 2 7 2 2

10 4 4 4 4
11 6 6 6 6

CS 406: More Powerful LR Parsers (S. D. Bruda) Winter 2016 3 / 8

SLR AND SHIFT-REDUCE DECISIONS

The LR(0) automaton characterizes the strings that can appear on the
stack of a shift-reduce parser
If the stack content is α and the rest of the input is x then a sequence of
reductions will take αx to 〈S〉
However, not all the prefixes can appear on the stack, since the parser
must not shift past a handle

Example: 〈E〉
R
⇒∗ 〈F〉 ∗ id

R
⇒∗ (〈E〉) ∗ id

At various times the stack will hold the prefixes (, (〈E〉, and (〈E〉), but will
never hold (〈E〉) ∗ since (〈E〉) is already a handle which must to be
reduced to 〈F〉 before shifting ∗
We say that (〈E〉) ∗ is not a viable prefix (but the others above are)

The LR(0) automaton recognizes viable prefixes
Item 〈A〉 ::= β1 • β2 is valid for a viable prefix αβ1 if there exists a derivation

〈S〉
R
⇒∗ α〈A〉w R⇒ αβ1β2w

That 〈A〉 ::= β1 • β2 is valid for the prefix αβ1 tells us a lot about whether to
reduce or to shift

If β1 6= ε then this suggests that we do not yet have a handle on the stack, so
we’d better shift
If β1 = ε then we do have a handle on the stack and so we can reduce

CS 406: More Powerful LR Parsers (S. D. Bruda) Winter 2016 4 / 8

LIMITS TO SLR TABLE CONSTRUCTION

The construction of a SLR(1) table may fail because the FOLLOW
information is computed considering all the rules in the grammar

Sometimes this casts a larger net than necessary; consider:

〈S’〉 ::= 〈S〉 $ (1)

〈S〉 ::= 〈A〉 〈B〉 (2)

| a c (3)

| x 〈A〉 c (4)

〈A〉 ::= a (5)

〈B〉 ::= b (6)

| ε (7)

I0 GoTo
〈S’〉 ::= •〈S〉 $ 4
〈S〉 ::= •〈A〉 〈B〉 2
〈S〉 ::= •a c 3
〈S〉 ::= •x 〈A〉 c 1
〈A〉 ::= •a 3

I3 GoTo
〈S〉 ::= a • c 6
〈A〉 ::= a •

FOLLOW(〈A〉) includes b (because rule 2) and also c (because of rule 4)
If we reduce 〈A〉 in state I3 then we would eventually need to apply rule 2,
yet this inclusion is caused by the fact that c ∈ FOLLOW(〈A〉), which
happens because of rule 4
If we “split” 〈A〉 into two nonterminals, one used in rule 2 and the other in
rule (4) then the grammar becomes SLR(1)!

CS 406: More Powerful LR Parsers (S. D. Bruda) Winter 2016 5 / 8

LIMITS TO SLR TABLE CONSTRUCTION

The construction of a SLR(1) table may fail because the FOLLOW
information is computed considering all the rules in the grammar

Sometimes this casts a larger net than necessary; consider:

〈S’〉 ::= 〈S〉 $ (1)

〈S〉 ::= 〈A〉 〈B〉 (2)

| a c (3)

| x 〈A〉 c (4)

〈A〉 ::= a (5)

〈B〉 ::= b (6)

| ε (7)

I0 GoTo
〈S’〉 ::= •〈S〉 $ 4
〈S〉 ::= •〈A〉 〈B〉 2
〈S〉 ::= •a c 3
〈S〉 ::= •x 〈A〉 c 1
〈A〉 ::= •a 3

I3 GoTo
〈S〉 ::= a • c 6
〈A〉 ::= a •

FOLLOW(〈A〉) includes b (because rule 2) and also c (because of rule 4)
If we reduce 〈A〉 in state I3 then we would eventually need to apply rule 2,
yet this inclusion is caused by the fact that c ∈ FOLLOW(〈A〉), which
happens because of rule 4
If we “split” 〈A〉 into two nonterminals, one used in rule 2 and the other in
rule (4) then the grammar becomes SLR(1)!

CS 406: More Powerful LR Parsers (S. D. Bruda) Winter 2016 5 / 8

LALR(1) TABLE CONSTRUCTION

LALR (lookahead LR) offers a more precise decision on which tokens
can follow a nonterminal

Based on the same LR(0) automaton
So the LALR(1) table has the same number of rows as the SLR table
Most popular given the good balance of power and efficiency

The table is constructed using the following algorithm:
Given an augmented grammar with the added rule 〈S’〉 ::= 〈S〉 (where 〈S〉
is the original axiom):

1 Construct the LR(0) automaton with states I0, . . . , In
2 Line i of the table is constructed starting from Ii , 1 ≤ i ≤ n as follows:

1 If 〈A〉 ::= α • aβ ∈ Ii , a ∈ Σ, and GOTO(Ii , a) = Ij then Action[i, a] = j (shift j)
2 If 〈A〉 ::= α• ∈ Ii then for all a ∈ ItemFollow((s, 〈A〉 ::= α•)) set

Action[i, a] = reduce 〈A〉 ::= α
3 If 〈S’〉 ::= 〈S〉• ∈ Ii then Action[i, $] = accept
4 Action[i, 〈A〉] for 〈A〉 ∈ N are computed as before (based on the automaton)

CS 406: More Powerful LR Parsers (S. D. Bruda) Winter 2016 6 / 8

LALR(1) PROPAGATION GRAPH

function BUILDGRAPH():
foreach state s do

foreach item ∈ s do
v ← Graph.ADDVERTEX((s,item))
ItemFollow(w)← ∅

foreach rule 〈S’〉 ::= w do
ItemFollow((start,〈S’〉 ::= •w))← {$}

foreach state s do
foreach item 〈A〉 ::= α • 〈B〉γ ∈ s do

v ← Graph.FINDVERTEX((s, 〈A〉 ::= α • 〈B〉γ))
Graph.ADDEDGE(v , (Action[s, 〈B〉], 〈A〉 ::= α〈B〉 • γ))
foreach w ∈ Graph.FINDVERTEX(s, 〈B〉 ::= •δ) do

ItemFollow(w)← ItemFollow(w) ∪ FIRST(γ)
if γ ⇒∗ x implies x = ε then

Graph.ADDEDGE(v ,w)

While creating
vertices we add
to ItemFollow
whatever actual
tokens follow the
nonterminal in
discussion in the
rules themselves
(FIRST(γ))
Edges account
for those cases in
which whatever
follows the
nonterminal in the
rule rewrites to ε

CS 406: More Powerful LR Parsers (S. D. Bruda) Winter 2016 7 / 8

LALR(1) PROPAGATION GRAPH (CONT’D)

function EVALGRAPH():
repeat

changed ← False
foreach all edges (v ,w) in Graph do

old ← ItemFollow(w)
ItemFollow(w)← ItemFollow(w) ∪ ItemFollow(v)
if ItemFollow(w) 6= old then changed ← True

until not changed :

function LALRLOOKAHEAD():
BUILDGRAPH()
EVALGRAPH()

Recall that the edges
are created when
whatever follows the
nonterminal 〈B〉 in the
rule 〈A〉 ::= α • 〈B〉γ
rewrites to ε
In such a case
whatever follows 〈A〉
must also follow 〈B〉

Lookahead is either generated (when FIRST(γ) 6= ∅) or propagated (when
γ ⇒∗ ε)
There is no guarantee for the running time of EVALGRAPH since multiple
passes may be necessary

In practice however the algorithm converges quickly

CS 406: More Powerful LR Parsers (S. D. Bruda) Winter 2016 8 / 8

