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LR(0) AUTOMATON AND SHIFT-REDUCE DECISIONS -~

@ In state 2 we generally reduce, but we can also shift whenever the next
input token is
o If we look at the two items in State 2 then it is immediate we should shift
(since no other rule will eat up * next)
@ Such a decision can be made algorithmically by looking one token ahead
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SLR PARSING

@ We assume an augmented grammar with the added rule (S’) ::= (S)
(where (S) is the original axiom)
@ We begin with the LR(0) items and automaton
@ The decision on when to reduce to (A) are taken based on the set
FoOLLOW((A))
@ The table is constructed using the following algorithm:
@ Construct the LR(0) automaton with states b, ..., I
@ Line i of the table is constructed starting from /;, 1 < i < n as follows:
Q If(A) == aeaBcl,ac X, and GoTo(l;, a) = I; then Actioni, a] =|j | (shift /)
@ If (A) == ae € [ithenforall 2 € FOLLOW((A)) set
Action[i, a] = reduce (A) = «

Q If (S) == (S)e c [; then Action]i, $] = accept
@ Action[i, (A)] for (A) € N are computed as before (based on the automaton)

@ We thus obtain a SLR parsing table and thus an SLR parser

e Technically, this is a SLR(1) parsing table/parser
o If any conflicting actions result from this algorithm then the grammar is not
SLR(1)
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SLR TABLE EXAMPLE

State| + « () id $ (E) (E) (T) (F)
0
1[6] accept
2| 3 3 3
3|5 5 5 5
4
507 7 7 7
6 9]
7
8|[6]
9| 2 2 2
10| 4 4 4 4
116 6 6 6
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SLR AND SHIFT-REDUCE DECISIONS

@ The LR(0) automaton characterizes the strings that can appear on the
stack of a shift-reduce parser

@ If the stack content is « and the rest of the input is x then a sequence of
reductions will take ax to (S)

@ However, not all the prefixes can appear on the stack, since the parser
must not shift past a handle

R R

o Example: (E) =" (F) x id="((E)) = id

o At various times the stack will hold the prefixes (, ( (E), and ( (E) ), but will
never hold ( (E) )  since ( (E) ) is already a handle which must to be
reduced to (F) before shifting

o We say that ( (E) ) = is not a viable prefix (but the others above are)

@ The LR(0) automaton recognizes viable prefixes
o Item (A) = By e (2 is valid for a viable prefix a8y if there exists a derivation

R
(S) =* al(Ayw £ afi fow
o That (A) ::= [ e 3, is valid for the prefix a3 tells us a lot about whether to
reduce or to shift
@ If 81 # e then this suggests that we do not yet have a handle on the stack, so
we'd better shift
@ If By = e then we do have a handle on the stack and so we can reduce
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LIMITS TO SLR TABLE CONSTRUCTION

@ The construction of a SLR(1) table may fail because the FoLLOW
information is computed considering all the rules in the grammar

o Sometimes this casts a larger net than necessary; consider:
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o FoLLow((A)) includes b (because rule 2) and also ¢ (because of rule 4)

o If we reduce (A) in state /5 then we would eventually need to apply rule 2,
yet this inclusion is caused by the fact that ¢ € FOLLOW((A)), which
happens because of rule 4

o If we “split” (A) into two nonterminals, one used in rule 2 and the other in
rule (4) then the grammar becomes SLR(1)!
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LALR(1) TABLE CONSTRUCTION

@ LALR (lookahead LR) offers a more precise decision on which tokens
can follow a nonterminal
o Based on the same LR(0) automaton
o So the LALR(1) table has the same number of rows as the SLR table
@ Most popular given the good balance of power and efficiency
@ The table is constructed using the following algorithm:

e Given an augmented grammar with the added rule (S’) ::= (S) (where (S)
is the original axiom):

@ Construct the LR(0) automaton with states b, - .., /
@ Line i of the table is constructed starting from /;, 1 < i < n as follows:
Q If(A) == aeap e l,ac x,and GoTo(/;, a) = /; then Action[i, a] = | j | (shift j)
Q If(A) == ae c lithenforall a € ltemFollow((s, (A) ::= «e)) set
Action[i, a] = reduce (A) = «
@ If (S’) ::== (S)e € I; then Action[i,$] = accept
@ Action[i, (A)] for (A) € N are computed as before (based on the automaton)
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LALR(1) PROPAGATION GRAPH

function BUILDGRAPH():
foreach state s do
foreach jitem € s do
v < Graph.ADDVERTEX((S,item))
IltemFollow(w) <

foreach rule (S’) ::= wdo
| ltemFollow((start,(S’) ::= ew)) < {$}
foreach state s do
foreach item (A) ::= o e (B)y € sdo
v < Graph.FINDVERTEX((s, (A) = a e (B)v))

foreach w € Graph.FINDVERTEX(S, (B) ::= eJ) do
ItemFollow(w) < ItemFollow(w) U FIRST(y)
if v =* x implies x = ¢ then
| Graph.ADDEDGE(v,w)
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Graph.ADDEDGE(v, (Action[s, (B)], (A) == «(B) e%))

@ While creating
vertices we add
to ltemFollow
whatever actual
tokens follow the
nonterminal in
discussion in the
rules themselves

(FIRST(¥))

@ Edges account

for those cases in
which whatever
follows the
nonterminal in the
rule rewrites to
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LALR(1) PROPAGATION GRAPH (CONT’D)

function EVALGRAPH(): @ Recall that the edges
repeat are created when
changed + False
foreach all edges (v, w) in Graph do Whateve.r fOHOWS_the
old < ItemFollow(w) nonterminal (B) in the
ItemFollow(w) < ltemFollow(w) U ltemFollow(v) rule (A) = e (B)y
if ltemFollow(w) # old then changed < True rewrites to &

until not changed:

function LALRL 0 @ In such a case
unction OOKAHEAD():
L BUILDGRAPH() whatever follows (A)

EVALGRAPH() must also follow (B)

o Lookahead is either generated (when FIRST(v) # @) or propagated (when
7 ="¢)
@ There is no guarantee for the running time of EVALGRAPH since multiple
passes may be necessary
o In practice however the algorithm converges quickly
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