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SEMANTIC ANALYSIS

Parsing only verifies that the program consists of tokens arranged in a
syntactically valid combination – now we move to check whether they
form a sensible set of instructions in the programming language →
semantic analysis

Any noun phrase followed by some verb phrase makes a syntactically
correct English sentence, but a semantically correct one

has subjectverb agreement
has proper use of gender
the components go together to express an idea that makes sense

For a program to be semantically valid:
all variables, functions, classes, etc. must be properly defined
expressions and variables must be used in ways that respect the type
system
access control must be respected
etc.

Note however that a valid program is not necessariy correct
int Fibonacci(int n) {

if (n <= 1) return 0;

return Fibonacci(n - 1) + Fibonacci(n - 2); }
int main() { Print(Fibonacci(40)); }

Valid but not correct!
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SEMANTIC ANALYSIS (CONT’D)

Reject the largest number of incorrect programs
Accept the largest number of correct programs

Do so quickly!

http://xkcd.com/303/

Some semantic analysis done while parsing (syntax directed translation)
Some languages specifically designed for exclusive syntax directed
translation (one-pass compilers)
Other languages require repeat traversals of the AST after parsing

Several components of semantic analysis:
Type and scope checking
Other semantic rules (language dependent)
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TYPES AND DECLARATIONS

A type is a set of values and a set of operations operating on those values
Three categories of types in most programming languages:

Base types (int, float, double, char, bool, etc.) → primitive types provided
directly by the underlying hardware
Compound types (enums, arrays, structs, classes, etc.) → types are
constructed as aggregations of the base types
Complex types (lists, stacks, queues, trees, heaps, tables, etc) → abstract
data types, may or may not exist in a language

In many languages the programmer must first establish the name, type,
and lifetime of a data object (variable, function, etc.) through declarations

Most type systems rely on declarations
Notable exceptions: functional languages that do not require declarations
but work hard to infer the data types of variables from the code
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TYPE CHECKING

The bulk of semantic analysis = the process of verifying that each
operation respects the type system of the language

Generally means that all operands in any expression are of appropriate
types and number
Sometimes the rules are defined by other parts of the code (e.g., function
prototypes), and sometimes such rules are a part of the language itself (e.g.,
“both operands of a binary arithmetic operation must be of the same type”)

Type checking can be done compilation, during execution, or across both
A language is considered strongly typed if each and every type error is
detected during compilation
Static type checking is done at compile-time

The information needed is obtained via declarations and stored in a master
symbol table
The types involved in each operation are then checked

Dynamic type checking is implemented by including type information for
each data location at run time
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THE SYMBOL TABLE INTERFACE

The symbol table is used to keep track of which declaration is in effect
upon encountering a reference to an id

Used in both type and scope checking, so it must keep track of scopes as
well as declarations

A suitable interface therefore contains the following functions
ENTERSYMBOL(name, type) → adds the id name in the symbol table
(current scope) with type type
RETRIEVESYMBOL(name) → returns the currently valid entry in the symbol
table for name or a null pointer if no such entry exists

OPENSCOPE() → opens a new scope so that any new symbols will be
processed in the new scope
CLOSESCOPE() → closes the current scope, so that all references revert to
the outer scope
DECLAREDLOCALLY(name) → tests whether name is declared in the current
scope
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THE SYMBOL TABLE IMPLEMENTATION

The symbol table is an association list, capable of storing pairs key-data
and retrieve stored data based on key values

Some additional complications are caused by the existence of scopes (to be
addressed later)

The usual suspects provide adequate implementations; the most efficient
include

Balanced binary search trees → O(log n) access
Note that simple binary search trees will likely be inefficient since keys (variable
names) are seldom random so the tree is likely to be unbalanced

Hash tables → particularly suited for implementing association lists, the
most used data structure in practice
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TYPE CHECKER DESIGN

Design process defining a type system:
1 Identify the types that are available in the language
2 Identify the language constructs that have types associated with them
3 Identify the semantic rules for the language

C++-like language example (declarations required = somewhat strongly
typed)

Base types (int, double, bool, string) + compound types (arrays, classes)
Arrays can be made of any type (including other arrays)
ADTs can be constructed using classes (no need to handle them separately)

Type-related language constructs:
Constants: type given by the lexical analysis
Variables: all variables must have a declared type (base or compound)
Functions: precise type signature (arguments + return)
Expressions: each expression has a type based on the type of the composing
constant, variable, return type of the function, or type of operands
Other constructs (if, while, assignment, etc.) also have associate types (since
they have expressions inside)

Semantic rules govern what types are allowable in the various language
constructs

Rules specific to individual constructs: operand to a unary minus must either be
double or int, expression used in a loop test must be of bool type, etc.
General rules: all variables must be declared, all classes are global, etc.
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TYPE CHECKING IMPLEMENTATION

First step: record type information with each identifier
The lexical analyzer gives the name
The parser needs to connect that name with the type (based on declaration)
This information is stored in a symbol table
When building the node for a 〈var〉 construct
(say, int a;) the parser can associate the
type (int) with the variable (a)
A suitable entry in the symbol table can them
be created
Typically the symbol table is stored outside
the AST
The class or struct entry in a symbol ta-
ble is a table in itself (recording all fields and
their types)

〈decl〉 ::= 〈var〉; 〈decl〉
〈var〉 ::= 〈type〉 〈identifier〉

〈type〉 ::= int
| bool
| double
| string
| 〈identifier〉
| 〈type〉[ ]

Second step: verify language constructs for type consistency
Can be done while parsing (in such a case declarations must precede use)
Can also be done in a subsequent parse tree traversal (more flexible on the
placement of declarations)
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TYPE CHECKING IMPLEMENTATION (CONT’D)

Second step: verify language constructs for type consistency, continued
1 Verification based on the rules of the grammar

While examining an 〈expr〉+ 〈expr〉 node
the types of the two 〈expr〉 must agree with
each other and be suitable for addition

While examining a 〈id〉 = 〈expr〉 the type of
〈expr〉 (determined recursively) must agree
with the type of 〈id〉 (retrieved from the
symbol table)

Etc.

〈expr〉 ::= 〈const〉
| 〈id〉
| 〈expr〉+ 〈expr〉
| 〈expr〉/〈expr〉
. . .

〈stmt〉 ::= 〈id〉 = 〈expr〉
. . .

2 Verification based on the general type rules of the language
Examples:

The index in an array selection must be of integer type
The two operands to logical && must both have bool type; the result is bool type
The type of each actual argument in a function call must be compatible with the
type of the respective formal argument

Essentially the process consists of annotating all AST nodes with type
information, making sure that all annotations are consistent
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TYPE CHECKING IMPLEMENTATION (CONT’D)

The AST annotation process is accomplished using synthesis rules
Specifies how to compute the type of a node from on the types of its children

Examples include:
Various rules as specified in the language definition, e.g.
if f has type s → t and x has type s then f (x) has type t

Rules for type inference (if applicable), e.g.
if f (x) is an expression then for some α and β, f has type α→ β and x has type α

Type inference is necessary in languages such as ML and HASKELL which do
type checking but do not require declarations

Rules for type conversions (if allowed in the language), e.g.
if E1.type = integer and E2.type = integer then (E1 + E2).type = integer
else if E1.type = float and E2.type = integer then (E1 + E2).type = float
. . .
Rules for overloaded functions, e.g.
if f can have the type si → ti for 1 ≤ i ≤ n with si 6= sj for i 6= j and x has type sk
then f (x) has type tk
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TYPE CHECKING IMPLEMENTATION (CONT’D)

Better (more general) approach to type conversions:
Establish a type hierarchy or partial order, based on the data storable in the
types

t1 ≤ t2 iff t2 can store all the data storable in t1
Define the function MAX(t1, t2) which returns the least upper bound of t1 and
t2 in the partial order
Define the function WIDEN(a, t1,w) which converts if necessary expression
a from type t1 to type w

If conversion is necessary then a new AST node will be inserted
If no conversion is necessary then the AST is not changed

if E1.type = t1 and E2.type = t2 then
w ← MAX(t1, t2)
if w is undefined then signal type error
else

WIDEN(E1, t1,w)
WIDEN(E1, t1,w)
(E1 + E2).type← w
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SCOPE CHECKING

Scope constrains the visibility of an identifier to some subsection of the
program

Local variables are only visible in the block in this they are defined
Global variables are visible in the whole program

A scope is a section of the program enclosed by basic program delimiters
such as { } in C

Many languages allow nested scopes
The scope defined by the innermost current such a unit is called the current
scope
The scopes defined by the current scope and any enclosing program units
are open scopes
All other scopes are closed

Scope checking: given a point in the program and an identifier, determine
whether that identifier is accessible at that point

In essence, the program can only
access identifiers that are in the
currently open scopes

In addition, in the event of name
clashed the innermost scope wins

int a; // (1)

void bubble(int a) { // (2)

int a; // (3)

a = 2; // (3) wins!

}
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IMPLEMENTATION OF SCOPE CHECKING

Scope checking is implemented at the symbol table level, with two
approaches

1 One symbol table per scope organized into a scope stack
When a new scope is opened, a new symbol table is created and pushed on the
stack
When a scope is closed, the top table is popped
All declared identifiers are put in the top table
To find a name we start at the top table and continue our way down until found; if
we do not find it, then the variable is not accessible

2 Single symbol table
Each scope is assigned a number
Each entry in the symbol table contains the number of the enclosing scope
A name is searched in the table in decreasing scope number (higher number
has priority)→ need efficient data organization for the symbol table (hash table)
A name may appear in the table more than once as long as the scope numbers
are different
When a new scope is created, the scope number is incremented
When a scope is closed, all entries with that scope number are deleted from the
table and then the current scope number is decremented
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IMPLEMENTATION OF SCOPE CHECKING (CONT’D)

1 Stack of symbol tables
Disadvantages

Overhead in maintaining the stack structure (and creating symbol tables)
Global variables at the bottom of the stack→ heavy penalty for accessing
globals

Advantages
Once the symbol table is populated it remains unchanged throughout the
compilation process→ more robust code

2 Single symbol table
Disadvantages

Closing a scope can be an expensive operation
Advantages

Efficient access to all scopes (including global variables)
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SYMBOL TABLES: ADVANCED FEATURES

Compound types: types defined using other types, with arbitrary depth
Common storage technique: store compound types as a tree structure

struct {

char *s;

int n;

int nums[5];

} arr [12];

char

pointer (s) int (n) array (nums)

5 int

struct12

array (arr)

Alternate technique: Each compound type entry is a symbol table by itself
(containing the names and types of the members)

Overloading: multiple ids with different type signatures
Possible storage techniques: have the id associated with a list of types
(rather than a single type), or encode the type in the table key

Type hierarchies: inheritance, interfaces, etc.
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EQUIVALENCE OF COMPOUND TYPES

Equivalence of compound types can be done recursively based on the
tree structure
bool AreEquivalent(struct typenode *tree1, struct typenode *tree2) {

if (tree1 == tree2) // if same type pointer, must be equivalent!

return true;

if (tree1->type != tree2->type) // check types first

return false;

switch (tree1->type) {

case T_INT: case T_DOUBLE: ... // same base type

return true;

case T_PTR:

return AreEquivalent(tree1->child[0], tree2->child[0]);

case T_ARRAY:

return AreEquivalent(tree1->child[0], tree2->child[0]) &&

AreEquivalent(tree1->child[1], tree2->child[1]);

...

}

}

Also needs some way to deal with circular types, such as marking the
visited nodes so that we do not compare them ever again
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EQUIVALENCE OF COMPOUND TYPES (CONT’D)

When are two custom types equivalent?
Named equivalence: when the two names are identical

Equivalence assessed by name only (just like base types)
Structural equivalence: when the types hold the same kind of data (possibly
recursively)

Equivalence assessed by equivalence of the type trees (as above)
Structural equivalence is not always easy to do, especially on infinite (graph)
types

Named of structural equivalence is a feature of the language
Most (but not all) languages only support named equivalence

Modula-3 and Algol have structural equivalence.
C, Java, C++, and Ada have name equivalence.
Pascal leaves it undefined: up to the implementation
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TYPE (CLASS) DEFINITIONS

A class definition generated a new type just like for structures/records
However, this type also includes signatures for member functions
Using a symbol table for each class declaration more efficient than the tree
implementation

Need to maintain pointers to the parent classes (if any) and to the
interfaces being implemented (if any)
The pointers to the interfaces must be used to verify that all the interfaces
are properly implemented
The pointers to the parents will be used to resolve subsequent references
to the members of the class
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