CS 403: Type Checking

Stefan D. Bruda

Winter 2015

SEMANTIC ANALYSIS

@ Parsing only verifies that the program consists of tokens arranged in a
syntactically valid combination — now we move to check whether they
form a sensible set of instructions in the programming language —
semantic analysis

@ Any noun phrase followed by some verb phrase makes a syntactically
correct English sentence, but a semantically correct one
@ has subjectverb agreement
@ has proper use of gender
@ the components go together to express an idea that makes sense
@ For a program to be semantically valid:
o all variables, functions, classes, etc. must be properly defined
@ expressions and variables must be used in ways that respect the type
system
@ access control must be respected
@ efc.

@ Note however that a valid program is not necessariy correct

int Fibonacci(int n) {

if (n <= 1) return O;

return Fibonacci(n - 1) + Fibonacci(n - 2); }
int main() { Print(Fibonacci(40)); }

CS 403: Type Checking (S. D. Bruda) Winter 2015 1/18

SEMANTIC ANALYSIS

@ Parsing only verifies that the program consists of tokens arranged in a
syntactically valid combination — now we move to check whether they
form a sensible set of instructions in the programming language —
semantic analysis

@ Any noun phrase followed by some verb phrase makes a syntactically
correct English sentence, but a semantically correct one
@ has subjectverb agreement
@ has proper use of gender
@ the components go together to express an idea that makes sense
@ For a program to be semantically valid:
o all variables, functions, classes, etc. must be properly defined
@ expressions and variables must be used in ways that respect the type
system
@ access control must be respected
@ efc.
@ Note however that a valid program is not necessariy correct
int Fibonacci(int n) {
if (n <= 1) return 0; // should be return 1; !
return Fibonacci(n - 1) + Fibonacci(n - 2); }
int main() { Print(Fibonacci(40)); }
e Valid but not correct!

CS 403: Type Checking (S. D. Bruda) Winter 2015 1/18

SEMANTIC ANALYSIS (CONT’D)

@ Reject the largest number of incorrect programs
@ Accept the largest number of correct programs

CS 4083: Type Checking (S. D. Bruda) Winter 2015 2/18

SEMANTIC ANALYSIS (CONT’D)

@ Reject the largest number of incorrect programs
@ Accept the largest number of correct programs
@ Do so quickly!

THE #1 PROGRAMMER EXCUSE
FOR LEGITIMATELY SLACKING OFF:

“MY CODE'S COMPILING.”

http://xkcd.com/303/

CS 4083: Type Checking (S. D. Bruda) Winter 2015 2/18

SEMANTIC ANALYSIS (CONT’D)

@ Reject the largest number of incorrect programs
@ Accept the largest number of correct programs
@ Do so quickly!

THE #1 PROGRAMMER EXCUSE
FOR LEGITIMATELY SLACKING OFF:

“MY CODE'S COMPILING.”

http://xkcd.com/303/
@ Some semantic analysis done while parsing (syntax directed translation)
@ Some languages specifically designed for exclusive syntax directed
translation (one-pass compilers)
e Other languages require repeat traversals of the AST after parsing
@ Several components of semantic analysis:
@ Type and scope checking
@ Other semantic rules (language dependent)

CS 403: Type Checking (S. D. Bruda) Winter 2015 2/18

TYPES AND DECLARATIONS

@ Atype is a set of values and a set of operations operating on those values
@ Three categories of types in most programming languages:
e Base types (int, float, double, char, bool, etc.) — primitive types provided
directly by the underlying hardware
e Compound types (enums, arrays, structs, classes, etc.) — types are
constructed as aggregations of the base types
o Complex types (lists, stacks, queues, trees, heaps, tables, etc) — abstract
data types, may or may not exist in a language

@ In many languages the programmer must first establish the name, type,
and lifetime of a data object (variable, function, etc.) through declarations

@ Most type systems rely on declarations
o Notable exceptions: functional languages that do not require declarations
but work hard to infer the data types of variables from the code

CS 4083: Type Checking (S. D. Bruda) Winter 2015 3/18

TYPE CHECKING

@ The bulk of semantic analysis = the process of verifying that each
operation respects the type system of the language
o Generally means that all operands in any expression are of appropriate
types and number
o Sometimes the rules are defined by other parts of the code (e.g., function
prototypes), and sometimes such rules are a part of the language itself (e.g.,
“both operands of a binary arithmetic operation must be of the same type”)

@ Type checking can be done compilation, during execution, or across both

@ A language is considered strongly typed if each and every type error is

detected during compilation
o Static type checking is done at compile-time

@ The information needed is obtained via declarations and stored in a master
symbol table
@ The types involved in each operation are then checked
e Dynamic type checking is implemented by including type information for
each data location at run time

CS 4083: Type Checking (S. D. Bruda) Winter 2015 4/18

THE SYMBOL TABLE INTERFACE

@ The symbol table is used to keep track of which declaration is in effect
upon encountering a reference to an id
o Used in both type and scope checking, so it must keep track of scopes as
well as declarations
@ A suitable interface therefore contains the following functions
@ ENTERSYMBOL(name, type) — adds the id name in the symbol table
(current scope) with type type
@ RETRIEVESYMBOL(name) — returns the currently valid entry in the symbol
table for name or a null pointer if no such entry exists

CS 4083: Type Checking (S. D. Bruda) Winter 2015 5/18

THE SYMBOL TABLE INTERFACE

@ The symbol table is used to keep track of which declaration is in effect
upon encountering a reference to an id
o Used in both type and scope checking, so it must keep track of scopes as
well as declarations

@ A suitable interface therefore contains the following functions

@ ENTERSYMBOL(name, type) — adds the id name in the symbol table
(current scope) with type type

@ RETRIEVESYMBOL(name) — returns the currently valid entry in the symbol
table for name or a null pointer if no such entry exists

@ OPENSCOPE() — opens a new scope so that any new symbols will be
processed in the new scope

@ CLOSESCOPE() — closes the current scope, so that all references revert to
the outer scope

@ DECLAREDLOCALLY(name) — tests whether name is declared in the current
scope

CS 403: Type Checking (S. D. Bruda) Winter 2015 5/18

THE SYMBOL TABLE IMPLEMENTATION

@ The symbol table is an association list, capable of storing pairs key-data
and retrieve stored data based on key values
@ Some additional complications are caused by the existence of scopes (to be
addressed later)
@ The usual suspects provide adequate implementations; the most efficient
include
o Balanced binary search trees — O(log n) access
@ Note that simple binary search trees will likely be inefficient since keys (variable
names) are seldom random so the tree is likely to be unbalanced
e Hash tables — particularly suited for implementing association lists, the
most used data structure in practice

CS 403: Type Checking (S. D. Bruda) Winter 2015 6/18

TYPE CHECKER DESIGN

@ Design process defining a type system:
@ Identify the types that are available in the language
@ Identify the language constructs that have types associated with them
© |Identify the semantic rules for the language
@ C++-like language example (declarations required = somewhat strongly
typed)
e Base types (int, double, bool, string) + compound types (arrays, classes)
@ Arrays can be made of any type (including other arrays)
@ ADTs can be constructed using classes (no need to handle them separately)
o Type-related language constructs:
@ Constants: type given by the lexical analysis
@ Variables: all variables must have a declared type (base or compound)
@ Functions: precise type signature (arguments + return)
@ Expressions: each expression has a type based on the type of the composing
constant, variable, return type of the function, or type of operands
@ Other constructs (if, while, assignment, etc.) also have associate types (since
they have expressions inside)
e Semantic rules govern what types are allowable in the various language
constructs
@ Rules specific to individual constructs: operand to a unary minus must either be
double or int, expression used in a loop test must be of bool type, etc.
@ General rules: all variables must be declared, all classes are global, etc.

CS 4083: Type Checking (S. D. Bruda) Winter 2015 7/18

TYPE CHECKING IMPLEMENTATION

@ First step: record type information with each identifier

o The lexical analyzer gives the name
e The parser needs to connect that name with the type (based on declaration)
@ This information is stored in a symbol table
@ When building the node for a (var) construct
(say, int a;) the parser can associate the dec) = (var): (decl
type (int) with the variable (a) (decl) {van); (decl)

o A suitable entry in the symbol table can them <t§,V; eri ::; iﬁpe) (identifier)
be created | bool

o Typically the symbol table is stored outside | double
the AST . | string

o The class or struct entry in a symbol ta- | (identifier)
ble is a table in itself (recording all fields and | (ype)[]

their types)

CS 4083: Type Checking (S. D. Bruda) Winter 2015 8/18

TYPE CHECKING IMPLEMENTATION

@ First step: record type information with each identifier

o The lexical analyzer gives the name
e The parser needs to connect that name with the type (based on declaration)
@ This information is stored in a symbol table
@ When building the node for a (var) construct
(say, int a;) the parser can associate the dec) = (var): (decl
type (int) with the variable (a) (decl) {van); (decl)

o A suitable entry in the symbol table can them <t§,V; eri ; iﬁpe) (identifier)
be created | bool

o Typically the symbol table is stored outside | double
the AST . | string

o The class or struct entry in a symbol ta- | (identifier)
ble is a table in itself (recording all fields and | (ype)[]

their types)
@ Second step: verify language constructs for type consistency

@ Can be done while parsing (in such a case declarations must precede use)
o Can also be done in a subsequent parse tree traversal (more flexible on the
placement of declarations)

CS 403: Type Checking (S. D. Bruda) Winter 2015 8/18

TYPE CHECKING IMPLEMENTATION (CONT'D)

@ Second step: verify language constructs for type consistency, continued
@ Verification based on the rules of the grammar
@ While examining an (expr) + (expr) node

the types of the two (expr) must agree with (expr) == (const)
each other and be suitable for addition | (id)

@ While examining a (id) = (expr) the type of | (expr) + (expr)
(expr) (determined recursively) must agree | (expr)/{expr)
with the type of (id) (retrieved from the ..
symbol table) <stmt> = (id) = (expr)

o Etc. ..

@ Verification based on the general type rules of the Ianguage
Examples:

@ The index in an array selection must be of integer type

@ The two operands to logical && must both have bool type; the result is bool type

@ The type of each actual argument in a function call must be compatible with the
type of the respective formal argument

o Essentially the process consists of annotating all AST nodes with type
information, making sure that all annotations are consistent

CS 403: Type Checking (S. D. Bruda) Winter 2015 9/18

TYPE CHECKING IMPLEMENTATION (CONT'D)

@ The AST annotation process is accomplished using synthesis rules
@ Specifies how to compute the type of a node from on the types of its children
@ Examples include:

e Various rules as specified in the language definition, e.g.
if f has type s — t and x has type s then f(x) has type t

CS 403: Type Checking (S. D. Bruda) Winter 2015 10/18

TYPE CHECKING IMPLEMENTATION (CONT'D)

@ The AST annotation process is accomplished using synthesis rules

@ Specifies how to compute the type of a node from on the types of its children
@ Examples include:

e Various rules as specified in the language definition, e.g.
if f has type s — t and x has type s then f(x) has type t
o Rules for type inference (if applicable), e.g.
if f(x) is an expression then for some - and g, f has type a — 3 and x has type «

@ Type inference is necessary in languages such as ML and HASKELL which do
type checking but do not require declarations

CS 403: Type Checking (S. D. Bruda)

Winter 2015 10/18

TYPE CHECKING IMPLEMENTATION (CONT'D)

@ The AST annotation process is accomplished using synthesis rules
@ Specifies how to compute the type of a node from on the types of its children
@ Examples include:
e Various rules as specified in the language definition, e.g.
if f has type s — t and x has type s then f(x) has type t
o Rules for type inference (if applicable), e.g.
if f(x) is an expression then for some - and g, f has type a — 3 and x has type «
@ Type inference is necessary in languages such as ML and HASKELL which do
type checking but do not require declarations
@ Rules for type conversions (if allowed in the language), e.g.
if E4.type = integer and E,.type = integer then (E; + E,).type = integer
else if E;.type = float and E,.type = integer then (E; + Ey).type = float

CS 403: Type Checking (S. D. Bruda) Winter 2015 10/18

TYPE CHECKING IMPLEMENTATION (CONT'D)

@ The AST annotation process is accomplished using synthesis rules
@ Specifies how to compute the type of a node from on the types of its children
@ Examples include:
e Various rules as specified in the language definition, e.g.
if f has type s — t and x has type s then f(x) has type t

o Rules for type inference (if applicable), e.g.
if f(x) is an expression then for some - and g, f has type a — 3 and x has type «

@ Type inference is necessary in languages such as ML and HASKELL which do
type checking but do not require declarations

@ Rules for type conversions (if allowed in the language), e.g.
if E4.type = integer and E,.type = integer then (E; + E,).type = integer
else if E;.type = float and E,.type = integer then (E; + Ey).type = float

e Rules for overloaded functions, e.g.
if f can have the type s; — t; for 1 </ < nwith s; # s; for i # jand x has type sy
then f(x) has type t,

CS 403: Type Checking (S. D. Bruda) Winter 2015 10/18

TYPE CHECKING IMPLEMENTATION (CONT'D)

@ Better (more general) approach to type conversions:
o Establish a type hierarchy or partial order, based on the data storable in the
types
e t < by iff t, can store all the data storable in t
o Define the function MAX(t, &) which returns the least upper bound of t; and
t in the partial order
o Define the function WIDEN(a, t, w) which converts if necessary expression
a from type t; to type w
@ If conversion is necessary then a new AST node will be inserted
@ If no conversion is necessary then the AST is not changed

if Eq.type = t; and E,.type = t, then
W < MAX(t1 s tg)
if w is undefined then signal type error
else
WIDEN(Eq, ty, w)
L WIDEN(E1 b, W)
(E1 + E).type «+— w

CS 4083: Type Checking (S. D. Bruda) Winter 2015 11/18

SCOPE CHECKING

@ Scope constrains the visibility of an identifier to some subsection of the
program
o Local variables are only visible in the block in this they are defined
o Global variables are visible in the whole program
@ A scope is a section of the program enclosed by basic program delimiters
suchas{ }inC
o Many languages allow nested scopes
@ The scope defined by the innermost current such a unit is called the current
scope
o The scopes defined by the current scope and any enclosing program units
are open scopes
@ All other scopes are closed

@ Scope checking: given a point in the program and an identifier, determine
whether that identifier is accessible at that point

o In essence, the program can only int a; // (1)
access identifiers that are in the void bubble(int a) { // (2)
currently open scopes int a; // (3)

o In addition, in the event of name a=2; /7 (3) wins!

clashed the innermost scope wins }

CS 4083: Type Checking (S. D. Bruda) Winter 2015 12/18

IMPLEMENTATION OF SCOPE CHECKING

@ Scope checking is implemented at the symbol table level, with two
approaches
@ One symbol table per scope organized into a scope stack

When a new scope is opened, a new symbol table is created and pushed on the
stack

When a scope is closed, the top table is popped

All declared identifiers are put in the top table

To find a name we start at the top table and continue our way down until found; if
we do not find it, then the variable is not accessible

@ Single symbol table

Each scope is assigned a number

Each entry in the symbol table contains the number of the enclosing scope

A name is searched in the table in decreasing scope number (higher number
has priority) — need efficient data organization for the symbol table (hash table)
A name may appear in the table more than once as long as the scope numbers
are different

When a new scope is created, the scope number is incremented

When a scope is closed, all entries with that scope number are deleted from the
table and then the current scope number is decremented

CS 4083: Type Checking (S. D. Bruda) Winter 2015 13/18

IMPLEMENTATION OF SCOPE CHECKING (CONT'D)

@ Stack of symbol tables
e Disadvantages

@ Overhead in maintaining the stack structure (and creating symbol tables)
@ Global variables at the bottom of the stack — heavy penalty for accessing
globals

e Advantages

@ Once the symbol table is populated it remains unchanged throughout the
compilation process — more robust code
@ Single symbol table

e Disadvantages
@ Closing a scope can be an expensive operation

o Advantages
@ Efficient access to all scopes (including global variables)

CS 403: Type Checking (S. D. Bruda) Winter 2015 14/18

SYMBOL TABLES: ADVANCED FEATURES

@ Compound types: types defined using other types, with arbitrary depth
e Common storage technique: store compound types as a tree structure

array (arr)
struct { / N
char *s: struct
int n; / / \
int nums[5]; pointer (s) int (n array (nums)
} arr [12]; l / \
char int

o Alternate technique: Each compound type entry is a symbol table by itself
(containing the names and types of the members)

@ Overloading: multiple ids with different type signatures

o Possible storage techniques: have the id associated with a list of types
(rather than a single type), or encode the type in the table key

@ Type hierarchies: inheritance, interfaces, etc.

CS 4083: Type Checking (S. D. Bruda) Winter 2015 15/18

EQUIVALENCE OF COMPOUND TYPES

@ Equivalence of compound types can be done recursively based on the
tree structure
bool AreEquivalent(struct typenode *treel, struct typenode *tree2) {
if (treel == tree2) // if same type pointer, must be equivalent!
return true;
if (treel->type != tree2->type) // check types first
return false;
switch (treel->type) {
case T_INT: case T_DOUBLE: ... // same base type
return true;
case T_PTR:
return AreEquivalent (treel->child[0], tree2->child[0]);
case T_ARRAY:
return AreEquivalent(treel->child[0], tree2->child[0]) &&
AreEquivalent (treel->child[1], tree2->child[1]);

CS 4083: Type Checking (S. D. Bruda) Winter 2015 16/18

EQUIVALENCE OF COMPOUND TYPES

@ Equivalence of compound types can be done recursively based on the
tree structure
bool AreEquivalent(struct typenode *treel, struct typenode *tree2) {
if (treel == tree2) // if same type pointer, must be equivalent!
return true;
if (treel->type != tree2->type) // check types first
return false;
switch (treel->type) {
case T_INT: case T_DOUBLE: ... // same base type
return true;
case T_PTR:
return AreEquivalent (treel->child[0], tree2->child[0]);
case T_ARRAY:
return AreEquivalent(treel->child[0], tree2->child[0]) &&
AreEquivalent (treel->child[1], tree2->child[1]);

}
@ Also needs some way to deal with circular types, such as marking the
visited nodes so that we do not compare them ever again

CS 4083: Type Checking (S. D. Bruda) Winter 2015 16/18

EQUIVALENCE OF COMPOUND TYPES (CONT'D)

@ When are two custom types equivalent?
o Named equivalence: when the two names are identical
@ Equivalence assessed by name only (just like base types)

e Structural equivalence: when the types hold the same kind of data (possibly
recursively)

@ Equivalence assessed by equivalence of the type trees (as above)
@ Structural equivalence is not always easy to do, especially on infinite (graph)
types
@ Named of structural equivalence is a feature of the language
@ Most (but not all) languages only support named equivalence

@ Modula-3 and Algol have structural equivalence.
@ C, Java, C++, and Ada have name equivalence.
@ Pascal leaves it undefined: up to the implementation

CS 4083: Type Checking (S. D. Bruda) Winter 2015 17/18

TYPE (CLASS) DEFINITIONS

@ A class definition generated a new type just like for structures/records
o However, this type also includes signatures for member functions
e Using a symbol table for each class declaration more efficient than the tree
implementation
@ Need to maintain pointers to the parent classes (if any) and to the
interfaces being implemented (if any)
@ The pointers to the interfaces must be used to verify that all the interfaces
are properly implemented
@ The pointers to the parents will be used to resolve subsequent references
to the members of the class

CS 4083: Type Checking (S. D. Bruda) Winter 2015 18/18

