
CS 403: Semantic Analysis, continued

Stefan D. Bruda

Winter 2015



REACHABILITY AND TERMINATION

Both reachability and termination are undecidable!
A compiler typically performs a conservative analysis (will not identify all the
errors)

Analysis based on the flags isReachable and terminatesNormally
attached to each node in the AST and set according to the following
rules:

If isReachable is true for a statement list then it is also true for the first
statement in the list
If terminatesNormally is false for the last statement of a list then it is false for
the whole statement list
isReachable is always true for the body of a method, constructor, or static
initializer
terminatesNormally is always true for a variable declaration or expression
statement (assignment, function call, heap allocation, increment, decrement)
An empty statement list with isReachable set to false will never generate any
error message; its isReachable is also propagated to its successor
isReachable for some statement is set to the value of terminatesNormally for
the preceding statement (if any)
A return statement never terminates normally
Control structures may or may not terminate normally (discussed later)

CS 403: Semantic Analysis, continued (S. D. Bruda) Winter 2015 1 / 8



CONTROL STRUCTURES

If statements are valid iff the condition has type Boolean, and the “then”
and “else” branches (if any) are valid (recursively)

isReachable is set to true for both the “then” and the “else” branch
terminatesNormally is set to the disjunction between the flags of the “then”
and the “else” branches

While loops are valid iff their condition has type Boolean and their bodies
are valid (recursively)

If the condition is constant and false then the body is marked as unreachable
If the condition is constant and true then the loop is marked as terminating
abnormally, unless a reachable break statement exists in the body (case in
which the loop terminates normally)
If the condition is not constant then the loop is marked as terminating
normally

Do-while and Repeat loops are valid in the same sense as the while loop
The body of the loop is always reachable
If the condition is constant and true then the loop is marked as terminating
abnormally, unless a reachable break statement exists in the body (case in
which the loop terminates normally)
Otherwise terminatesNormally is initially set to false, but it can become true
if the body terminates normally

CS 403: Semantic Analysis, continued (S. D. Bruda) Winter 2015 2 / 8



CONTROL STRUCTURES

If statements are valid iff the condition has type Boolean, and the “then”
and “else” branches (if any) are valid (recursively)

isReachable is set to true for both the “then” and the “else” branch
terminatesNormally is set to the disjunction between the flags of the “then”
and the “else” branches

While loops are valid iff their condition has type Boolean and their bodies
are valid (recursively)

If the condition is constant and false then the body is marked as unreachable
If the condition is constant and true then the loop is marked as terminating
abnormally, unless a reachable break statement exists in the body (case in
which the loop terminates normally)
If the condition is not constant then the loop is marked as terminating
normally

Do-while and Repeat loops are valid in the same sense as the while loop
The body of the loop is always reachable
If the condition is constant and true then the loop is marked as terminating
abnormally, unless a reachable break statement exists in the body (case in
which the loop terminates normally)
Otherwise terminatesNormally is initially set to false, but it can become true
if the body terminates normally

CS 403: Semantic Analysis, continued (S. D. Bruda) Winter 2015 2 / 8



CONTROL STRUCTURES

If statements are valid iff the condition has type Boolean, and the “then”
and “else” branches (if any) are valid (recursively)

isReachable is set to true for both the “then” and the “else” branch
terminatesNormally is set to the disjunction between the flags of the “then”
and the “else” branches

While loops are valid iff their condition has type Boolean and their bodies
are valid (recursively)

If the condition is constant and false then the body is marked as unreachable
If the condition is constant and true then the loop is marked as terminating
abnormally, unless a reachable break statement exists in the body (case in
which the loop terminates normally)
If the condition is not constant then the loop is marked as terminating
normally

Do-while and Repeat loops are valid in the same sense as the while loop
The body of the loop is always reachable
If the condition is constant and true then the loop is marked as terminating
abnormally, unless a reachable break statement exists in the body (case in
which the loop terminates normally)
Otherwise terminatesNormally is initially set to false, but it can become true
if the body terminates normally

CS 403: Semantic Analysis, continued (S. D. Bruda) Winter 2015 2 / 8



CONTROL STRUCTURES (CONT’D)

C-like For loops are valid iff their initializer and increment are valid
statements (recursively), the condition has type Boolean or is empty, and
the body is valid (recursively)

However, in a for loop all the checks above are done in a new scope
Reachability and termination are done similarly with the while loop

Pascal-like For loops are more restrictive and have the following form:
for id := initialVal to finalVal do loopBody

This for statement is valid iff id is a scalar type (integer or enumeration),
initialVal and finalVal are valid expressions and have the same type as
id, and loopBody is valid (recursively)
id is also made constant during the analysis of the body since the body is
not allowed to change it

Continue statements are valid iff they appear inside an iterative control
structure (while, for, etc.)

Such verification is dependent on the construction of the AST
May require following the parent links of the statement (if available) or
suitable labeling of AST nodes during parsing

CS 403: Semantic Analysis, continued (S. D. Bruda) Winter 2015 3 / 8



CONTROL STRUCTURES (CONT’D)

C-like For loops are valid iff their initializer and increment are valid
statements (recursively), the condition has type Boolean or is empty, and
the body is valid (recursively)

However, in a for loop all the checks above are done in a new scope
Reachability and termination are done similarly with the while loop

Pascal-like For loops are more restrictive and have the following form:
for id := initialVal to finalVal do loopBody

This for statement is valid iff id is a scalar type (integer or enumeration),
initialVal and finalVal are valid expressions and have the same type as
id, and loopBody is valid (recursively)
id is also made constant during the analysis of the body since the body is
not allowed to change it

Continue statements are valid iff they appear inside an iterative control
structure (while, for, etc.)

Such verification is dependent on the construction of the AST
May require following the parent links of the statement (if available) or
suitable labeling of AST nodes during parsing

CS 403: Semantic Analysis, continued (S. D. Bruda) Winter 2015 3 / 8



CONTROL STRUCTURES (CONT’D)

C-like For loops are valid iff their initializer and increment are valid
statements (recursively), the condition has type Boolean or is empty, and
the body is valid (recursively)

However, in a for loop all the checks above are done in a new scope
Reachability and termination are done similarly with the while loop

Pascal-like For loops are more restrictive and have the following form:
for id := initialVal to finalVal do loopBody

This for statement is valid iff id is a scalar type (integer or enumeration),
initialVal and finalVal are valid expressions and have the same type as
id, and loopBody is valid (recursively)
id is also made constant during the analysis of the body since the body is
not allowed to change it

Continue statements are valid iff they appear inside an iterative control
structure (while, for, etc.)

Such verification is dependent on the construction of the AST
May require following the parent links of the statement (if available) or
suitable labeling of AST nodes during parsing

CS 403: Semantic Analysis, continued (S. D. Bruda) Winter 2015 3 / 8



CONTROL STRUCTURES (CONT’D)

Break statements are handled just like continue, except that they are
also allowed inside switch statements

Return statements are verified as follows:
They must appear inside a method or function (determined following parent
links or via suitable labeling during parsing – also useful for determining the
return type of that function)
Their argument must have the same type as the return type of the enclosing
function

Except that they have no argument for void functions

Return statements are always terminating abnormally

Goto statements depend on labels, which should be available in the AST
Usually processed in two steps, one for constructing the list of labels and the
next for verifying that the goto statement points to a valid label
Label validity depends on the language (local to a function, global, no goto
inside an iterative construct from the outside, etc.)

CS 403: Semantic Analysis, continued (S. D. Bruda) Winter 2015 4 / 8



CONTROL STRUCTURES (CONT’D)

Break statements are handled just like continue, except that they are
also allowed inside switch statements
Return statements are verified as follows:

They must appear inside a method or function (determined following parent
links or via suitable labeling during parsing – also useful for determining the
return type of that function)
Their argument must have the same type as the return type of the enclosing
function

Except that they have no argument for void functions

Return statements are always terminating abnormally

Goto statements depend on labels, which should be available in the AST
Usually processed in two steps, one for constructing the list of labels and the
next for verifying that the goto statement points to a valid label
Label validity depends on the language (local to a function, global, no goto
inside an iterative construct from the outside, etc.)

CS 403: Semantic Analysis, continued (S. D. Bruda) Winter 2015 4 / 8



CONTROL STRUCTURES (CONT’D)

Break statements are handled just like continue, except that they are
also allowed inside switch statements
Return statements are verified as follows:

They must appear inside a method or function (determined following parent
links or via suitable labeling during parsing – also useful for determining the
return type of that function)
Their argument must have the same type as the return type of the enclosing
function

Except that they have no argument for void functions

Return statements are always terminating abnormally

Goto statements depend on labels, which should be available in the AST
Usually processed in two steps, one for constructing the list of labels and the
next for verifying that the goto statement points to a valid label
Label validity depends on the language (local to a function, global, no goto
inside an iterative construct from the outside, etc.)

CS 403: Semantic Analysis, continued (S. D. Bruda) Winter 2015 4 / 8



CONTROL STRUCTURES (CONT’D)

Switch statements are valid iff:
The control expression and the case labels must be type checked (scalar
and also consistent with each other)
Each case label must be constant and no two labels must have the same
value
At most one default label must be present
All the statements in the body must be valid (recursively)
terminatesNormally is first set to false, and becomes true if either of the
following is true:

the switch body is empty
the last case group terminates normally
any case group contains a reachable break

CS 403: Semantic Analysis, continued (S. D. Bruda) Winter 2015 5 / 8



EXCEPTIONS

Throw statements must be type checked
They must be used to compile a list of exceptions being thrown (see below)

The body of a try statement must be valid (recursively)
All the statements are marked as reachable
A try terminates normally whenever some catch statement terminates
normally and also the default (if any) catch does the same

Catch statements must have a valid body (recursively) and:
They introduce a new identifier (in a new scope) which must be inserted into
the symbol table
A list of all the exceptions being caught should be assembled
This list is used to determine which exceptions are caught and which are not
The uncaught exceptions must be caught by outer catch statements or
declared as being thrown out of the function

Uncaught exceptions must be propagated throughout the AST

CS 403: Semantic Analysis, continued (S. D. Bruda) Winter 2015 6 / 8



CALLS

We assume an object-oriented language with inheritance and
overloading (if these are not present then things are simpler!)
The first step of analyzing a call is to determine which method definition
to use

If we have a method call then the “right” call is the nearest in the inheritance
hierarchy that has the right parameter types
If the method has no qualifier then we examine the current class and all its
superclasses
If the method has a qualifier that evaluates to an object of type T then we
examine the type T and all its superclasses
We then gather all the methods from the candidates that match the name +
visibility (public, private, protected) + parameter type

Actual arguments must be bindable to the formal parameters = type checking
If we still have more than one candidate, then we choose the most specific

We prefer the methods lower in the inheritance hierarchy
We prefer methods with arguments lower in the inheritance hierarchy
In all a method definition D is more specific than definition D′ if the class of D is
bindable to the class of D′ and each parameter of D is bindable to the respective
parameter of D′

CS 403: Semantic Analysis, continued (S. D. Bruda) Winter 2015 7 / 8



CALLS (CONT’D)

If after the process above we end up with one definition then that is the
one to call, else we signal an error
Additional checking:

Methods qualified by a class name must be static
A call to a void method must not be part of an expression
A call to a non-void method must have the return type checked against the
rest of the expression

Constructors are called indirectly but otherwise are checked using the
same procedure
Some languages allow functions to be defined inside functions (Python,
ML, etc.)

Again same procedure applies
Scoping must also be considered (according to the symbol table rules)

CS 403: Semantic Analysis, continued (S. D. Bruda) Winter 2015 8 / 8


