CS 403: Intermediate Representations and Code

Generation

Stefan D. Bruda

Winter 2015

INTERMEDIATE REPRESENTATIONS

@ Code generation is typically not done directly

@ The functioning of a compiler is typically split into a front-end and a
back-end
e The interface between the front- and the back-end is the intermediate
representation (or IR) = an assembly-like language, only nicer
@ A compiler collection for s languages and running on t architectures would
need s x t specific compilers, but only needs s + t compilers when an IR is
used (s front-ends and t back-ends)
o Code optimization easier to do with an intermediate representation
e The IR can also serve as a (portable) reference definition for the language
being compiled
e The IR simplifies the task of porting a compiler to a new platform
@ There are many intermediate representations in use (almost as many as
compilers)
o They are actually more alike than they are different — once you become
familiar with one it is not hard to learn others
o IRs are categorized according to where they fall between a high-level
language and machine code; we thus have high-level and low-level IRs

CS 403: Intermediate Representations and Code Generation (S. D. Bruda) Winter 2015 1/18

NOTABLE IR EXAMPLES

@ GCC IR = RTL (register-transfer language)

o LISP-like textual syntax and also binary (internal) representation

o Fairly low-level IR

o Assumes a general purpose register machine and incorporates some notion
of register allocation and instruction scheduling

@ The gcc compiler does most of its optimizations on the RTL representation,
saving only machine-dependent tweaks to be done as part of final code
generation

CS 403: Intermediate Representations and Code Generation (S. D. Bruda) Winter 2015 2/18

NOTABLE IR EXAMPLES

@ GCC IR = RTL (register-transfer language)

LISP-like textual syntax and also binary (internal) representation
Fairly low-level IR

o Assumes a general purpose register machine and incorporates some notion

of register allocation and instruction scheduling

@ The gcc compiler does most of its optimizations on the RTL representation,

saving only machine-dependent tweaks to be done as part of final code
generation

@ Java bytecode

Fairly high-level IR — see textbook for details

Based on a stack-based machine architecture

Includes abstract notions such as getstatic and invokevirtual along with
more low-level instructions such as 1dc (load constant) and add

Java bytecode is usually not translated into assembly language, but
executed by a Java virtual machine instead

Some compilers however do translate it into assembly (e.g. gcj)

CS 403: Intermediate Representations and Code Generation (S. D. Bruda) Winter 2015 2/18

RTL EXAMPLE

;; Function main
(note 3 2 4 "" NOTE_INSN_FUNCTION_BEG)
(note 6 4 7 0 NOTE_INSN_BLOCK_BEG)
(insn 7 6 8 (set (reg:SI 106)
(high:SI (symbol_ref:SI ("*.LLC0")))) -1 (nil)
(nil))
(insn 8 7 10 (set (reg:SI 8 %00)
(lo_sum:SI (reg:SI 106)
(symbol_ref:SI ("*.LLC0")))) -1 (nil) (nil))
(call_insn 10 8 12 (parallell
(set (reg:SI 8 %00)
(call (mem:SI (symbol_ref:SI ("printf")) 0) (const_int O [0x0])))
(clobber (reg:SI 15 %07))
1) -1 (nil)
(nil)
(expr_list (use (reg:SI 8 %00))
(nil)))
(note 12 10 13 0 NOTE_INSN_BLOCK_END)
(note 13 12 15 "" NOTE_INSN_FUNCTION_END)

CS 403: Intermediate Representations and Code Generation (S. D. Bruda) Winter 2015 3/18

JAVA BYTECODE EXAMPLE

Method Main()
0 aload_O
1 invokespecial #1 <Method java.lang.Object()>
4 return

Method void main(java.lang.Stringl[])
0 getstatic #2 <Field java.io.PrintStream out>
3 ldc #3 <String "Hello world">
5 invokevirtual #4 <Method void println(java.lang.String)>
8 return

CS 403: Intermediate Representations and Code Generation (S. D. Bruda) Winter 2015 4/18

CODE GENERATION

@ Code generation translates an AST into some low-ish level language (IR
or assembly)
@ ltis a typical recursive walk through the tree
@ Examples:
o To translate E; + E», generate code for E; and E; recursively, then generate
code for addition
o To translate while (E) B generate code for E (recursively), generate code for
branching to the end of the loop when E is false, generate code for B
(recursively), then generate a jump at the beginning of the code for E
o Etc.
@ The actual process of generating code depends heavily on the target
language

CS 403: Intermediate Representations and Code Generation (S. D. Bruda) Winter 2015 5/18

THREE-ADDRESS CODE (TAC)

@ Three-address code (TAC) is essentially a generic assembly language
@ Falls in the lower-end of the mid-level IRs
@ Variants commonly used as an IR, since it maps well to most assembly
languages
@ A TAC instruction can have at most three operands
e The operands could be two operands to a binary arithmetic operator with the
third being the result location, or an operand to compare to zero and a
second location to branch to, etc.

High-level TAC
_t1 =D *x c;
t2 = b *x d;
a=b*c+bxd; _t3 = _tl + _t2;
a = _t3;
_t1 =D + c;
_t2 = a < _t1;
if (a < b+ c¢) IfZ _t2 Goto _LO;
a=a-c; _t3 =a - c;
c=b * c; a = _t3;
_LO: _t4 =Db * c;
c = _t4;

CS 403: Intermediate Representations and Code Generation (S. D. Bruda) Winter 2015 6/18

TAC EXAMPLES (CONT'D)

High-level TAC
_t0 = LCall _ReadInteger;
n = _t0;
_tl = 4;
_t2 = _t1 * n;
n = ReadInteger(); t3 = vec + _t2;
Foo(vec[n]); t4 = *(_t3);
PushParam _t4;
LCall _Foo;

PopParams 4;

CS 403: Intermediate Representations and Code Generation (S. D. Bruda)

Winter 2015 7/18

DECAF TAC INSTRUCTIONS

@ Assignment: t2

= tl; t1 = "abcdefg"; t3 = LO;
@ The rvalue can be a variable, literal, or label
@ Arithmetic: t3 = t2 + t1; t3 = t2 - t1;
t3 = t2 / t1;

t3 = t2 * ti1;
t3 = t2 % t1;

o Other operators must be synthesized using the available primitives
@ Relational, equality, and logical: t3 = t2 == t1;

t3 = t2 < t1;
t3 = t2 && t1; t3 = t2 || t1;
o Other operators must be synthesized using the available primitives
@ Labels and branches: L1: Goto L1;
zero)

IfZ t1 Goto L1; (branchif t1is
@ Parameters:

o Before making a call parameters must be pushed from right to left:
PushParam t1;

@ Upon returning from the call the parameters must be popped using
PopParams x; where x is the number of bytes to be popped
@ Function/method call: LCall L1; t1 =

LCall L1;
ACall t1;

t0 = ACall t1;
@ LCall is for function labels known at compile time, while ACall is for

computed function addresses (most often from vtables)

o Note the different uses for void and non-void functions
CS 403: Intermediate Representations and Code Generation (S. D. Bruda)

Winter 2015 8/18

DECAF TAC INSTRUCTIONS (CONT’'D)

@ Function/method definition: BeginFunc 12; ... EndFunc;
@ The argument for BeginFunc is the size in bytes of the space needed for all
locals in the stack frame
@ Returning from a function: Return t1; Return;
@ Memory reference: t1 = *(t2); t1 = *(t2 + 8);
*(t1) = t2; *(t1 + -4) = t2;
e The (optional) offset must be an integer constant and can be positive or
negative
@ Array indexing is done by adding to the base address the offset multiplied by
the size of the element of the array
@ Object fields and method dispatch:
o To access member variables add offset to base and dereference
o To access methods retrieve the address of the method from the vrable and
then use ACall

@ Method specification: VTable ClassName = L1, L2, ...;

CS 403: Intermediate Representations and Code Generation (S. D. Bruda) Winter 2015 9/18

DECAF LIBRARY FUNCTIONS

@ _Alloc — one integer parameter, returns address of heap-allocated
memory of that size in bytes

@ ReadLine — no parameters, returns string read from user input
@ ReadInteger — no parameters, returns integer read from user input

_StringEqual — two string parameters, returns 1 if strings are equal and
0 otherwise

_PrintInt — one integer parameter, prints that number to the console
_PrintString — one string parameter, prints that string to the console
_PrintBool — one boolean parameter, prints true/false to the console
_Halt — no parameters, stops program execution

CS 403: Intermediate Representations and Code Generation (S. D. Bruda) Winter 2015 10/18

DECAF TRANSLATION EXAMPLES

@ Translating DECAF into TAC means generating the TAC program but also
figuring out temporary variables, creating labels, calling functions, etc.

@ Simplifying assumptions: no double type, booleans are 4-bit integers, all
the integers and pointers (for classes, arrays, strings) have a size of 4

bytes
void main() { main:
Print("hello world"); BeginFunc 4;
T _t0 = "hello world";

PushParam _tO;
LCall _PrintString;
PopParams 4;
EndFunc;

@ Go down from the Program node into the declaration list that has one
element (the function main)

o Generate the function label and the BeginFunc (leaving a placeholder for the
size)

o Generate recursively the body of the function (one single call)

o Come back and fill in the parameter of BeginFunc

o Generate the function postamble

CS 403: Intermediate Representations and Code Generation (S. D. Bruda) Winter 2015 11/18

DECAF TRANSLATION EXAMPLES: ARITHMETIC

void main() main: void main() main:

{ BeginFunc 12; { BeginFunc 44;
int a; _t0 = 2; _t0 = 3;
a=2+ a; _tl = _t0 + a; int b; b = _t0;
Print(a); a = _tl1; int a; _tl = 12;

} PushParam a; a = _tl;

LCall _PrintInt; b = 3; _t2 = 2;
PopParams 4; a = 12; _t3 =Db + _t2;

EndFunc; a=(b+ 2)- _t4 = 3;
(ax3)/6; _th = a x _t4;

} _t6 = 6;

_t7 = _t5 / _t6;
_t8 = _t3 - _t7;
a = _t8;
EndFunc;

CS 403: Intermediate Representations and Code Generation (S. D. Bruda) Winter 2015 12/18

DECAF TRANSLATION EXAMPLES: ARRAYS

void Foo(int[] arr) _Foo:

{ BeginFunc 44;
arr[1] = arr[0] * 2; _t0 = 1;

} _tl = 4;

_t2 = _t1 * _t0;
_t3 = arr + _t2;
_t4 = 0;

_tb = 4;

_t6 = _tb x _t4;
_t7 = arr + _t6;
_t8 = *x(_t7);
_t9 = 2;

_t10 = _t8 * _t9;
*(_t3) = _t10;
EndFunc;

CS 403: Intermediate Representations and Code Generation (S. D. Bruda) Winter 2015

DECAF TRANSLATION EXAMPLES: FUNCTIONS

int foo(int a, int b)
{

return a + b;

}

void main()

{
int c;
int d;
foo(c, d);
¥

_foo:
BeginFunc 4;
_t0 = a + b;
Return _tO;
EndFunc;

main:
BeginFunc 12;
PushParam d;
PushParam c;
_t1 = LCall _foo;
PopParams 8;
EndFunc;

CS 403: Intermediate Representations and Code Generation (S. D. Bruda)

Winter 2015

DECAF TRANSLATION EXAMPLES: CLASSES

class Animal {
int height;
void InitAnimal(int h) {
this.height = h;
}

}

class Cow extends Animal {
void InitCow(int h) {
InitAnimal(h);

}

void Foo(Cow betsy) {
betsy.InitCow(5);

_Animal.InitAnimal:
BeginFunc 0;
*(this + 4) = h;
EndFunc;

VTable Animal =
_Animal.InitAnimal,

i

_Cow.InitCow:
BeginFunc 8;
_t0 = *(this);
_tl = *x(_t0);
PushParam h;
PushParam this;
ACall _t1;
PopParams 8;
EndFunc;

VTable Cow =
_Animal.InitAnimal,
_Cow.InitCow,

Foo:

BeginFunc 12;

_t2 = 5;
_t3 = x(betsy);
_td = x(_t3 + 4);

PushParam _t2;
PushParam betsy;
ACall _t4;
PopParams 8;
EndFunc;

@ Note how this is passed as a “secret” first argument to a method calls!

CS 403: Intermediate Representations and Code Generation (S. D. Bruda)

Winter 2015 15/18

DECAF TRANSLATION EXAMPLES: CONDITIONALS

void main()

{
int a;
a = 23;
if (a == 23)
a = 10;
else
a = 19;
¥

main:

_LO:

_L1:

BeginFunc 24;
_t0 = 23;

a = _t0;

_tl = 23;

_t2 = a == _t1;
IfZ _t2 Goto _LO;
_t3 = 10;

a = _t3;

Goto _L1;

_t4 = 19;

a = _t4;
EndFunc;

CS 403: Intermediate Representations and Code Generation (S. D. Bruda)

Winter 2015

DECAF TRANSLATION EXAMPLES: LOOPS

void main() main:
{ BeginFunc 40;
int a; _t0 = 0;
a = 0; a = _t0;
_LO:
while (a < 10) { _t1 = 10;
Print(a % 2 == 0); _t2 = a < _tl;
a=a+1; IfZ _t2 Goto _L1;
} _t3 = 2;
} _t4 = a ¥} _t3;
_tb = 0;
_t6 = _t4 == _t5;

PushParam _t6;
LCall _PrintBool;
PopParams 4;
_t7 = 1;
_t8 = a + _t7;
a = _t8;
Goto _LO;
_L1:
EndFunc;

CS 403: Intermediate Representations and Code Generation (S. D. Bruda) Winter 2015

STORAGE ALLOCATION

@ The code generator, you must assign a location to each local variable,
parameter, and temporary variable
@ These locations occur in a particular stack frame (relative to the frame
pointer fp in MIPS) and are called fp-relative
o Parameters begin at address fp + 4 and grow upward
e Locals and temporaries begin at address fp - 8 and grow downward
@ From your point of view:
Location* location =
new Location(fpRelative, +4, locName);

CS 403: Intermediate Representations and Code Generation (S. D. Bruda) Winter 2015

STORAGE ALLOCATION

@ The code generator, you must assign a location to each local variable,
parameter, and temporary variable
@ These locations occur in a particular stack frame (relative to the frame
pointer fp in MIPS) and are called fp-relative
o Parameters begin at address fp + 4 and grow upward
o Locals and temporaries begin at address fp - 8 and grow downward
@ From your point of view:
Location* location =
new Location(fpRelative, +4, locName);
@ Global variables are stored starting from the MIPS global pointer (gp)
e Memory pointed at by gp is treated as an array of values that grows upward
(starting at gp+0)
@ Must choose an offset into this array for each global variable
@ From your point of view:
Location* global =
new Location(gpRelative, +8, locName);

CS 403: Intermediate Representations and Code Generation (S. D. Bruda) Winter 2015 18/18

