
CS 403: Intermediate Representations and Code
Generation

Stefan D. Bruda

Winter 2015

INTERMEDIATE REPRESENTATIONS

Code generation is typically not done directly
The functioning of a compiler is typically split into a front-end and a
back-end

The interface between the front- and the back-end is the intermediate
representation (or IR) = an assembly-like language, only nicer
A compiler collection for s languages and running on t architectures would
need s × t specific compilers, but only needs s + t compilers when an IR is
used (s front-ends and t back-ends)
Code optimization easier to do with an intermediate representation
The IR can also serve as a (portable) reference definition for the language
being compiled
The IR simplifies the task of porting a compiler to a new platform

There are many intermediate representations in use (almost as many as
compilers)

They are actually more alike than they are different – once you become
familiar with one it is not hard to learn others
IRs are categorized according to where they fall between a high-level
language and machine code; we thus have high-level and low-level IRs

CS 403: Intermediate Representations and Code Generation (S. D. Bruda) Winter 2015 1 / 18

NOTABLE IR EXAMPLES

GCC IR = RTL (register-transfer language)
LISP-like textual syntax and also binary (internal) representation
Fairly low-level IR
Assumes a general purpose register machine and incorporates some notion
of register allocation and instruction scheduling
The gcc compiler does most of its optimizations on the RTL representation,
saving only machine-dependent tweaks to be done as part of final code
generation

Java bytecode
Fairly high-level IR – see textbook for details
Based on a stack-based machine architecture
Includes abstract notions such as getstatic and invokevirtual along with
more low-level instructions such as ldc (load constant) and add

Java bytecode is usually not translated into assembly language, but
executed by a Java virtual machine instead
Some compilers however do translate it into assembly (e.g. gcj)

CS 403: Intermediate Representations and Code Generation (S. D. Bruda) Winter 2015 2 / 18

NOTABLE IR EXAMPLES

GCC IR = RTL (register-transfer language)
LISP-like textual syntax and also binary (internal) representation
Fairly low-level IR
Assumes a general purpose register machine and incorporates some notion
of register allocation and instruction scheduling
The gcc compiler does most of its optimizations on the RTL representation,
saving only machine-dependent tweaks to be done as part of final code
generation

Java bytecode
Fairly high-level IR – see textbook for details
Based on a stack-based machine architecture
Includes abstract notions such as getstatic and invokevirtual along with
more low-level instructions such as ldc (load constant) and add

Java bytecode is usually not translated into assembly language, but
executed by a Java virtual machine instead
Some compilers however do translate it into assembly (e.g. gcj)

CS 403: Intermediate Representations and Code Generation (S. D. Bruda) Winter 2015 2 / 18

RTL EXAMPLE

;; Function main

(note 3 2 4 "" NOTE_INSN_FUNCTION_BEG)

(note 6 4 7 0 NOTE_INSN_BLOCK_BEG)

(insn 7 6 8 (set (reg:SI 106)

(high:SI (symbol_ref:SI ("*.LLC0")))) -1 (nil)

(nil))

(insn 8 7 10 (set (reg:SI 8 %o0)

(lo_sum:SI (reg:SI 106)

(symbol_ref:SI ("*.LLC0")))) -1 (nil)(nil))

(call_insn 10 8 12 (parallel[

(set (reg:SI 8 %o0)

(call (mem:SI (symbol_ref:SI ("printf")) 0) (const_int 0 [0x0])))

(clobber (reg:SI 15 %o7))

]) -1 (nil)

(nil)

(expr_list (use (reg:SI 8 %o0))

(nil)))

(note 12 10 13 0 NOTE_INSN_BLOCK_END)

(note 13 12 15 "" NOTE_INSN_FUNCTION_END)

CS 403: Intermediate Representations and Code Generation (S. D. Bruda) Winter 2015 3 / 18

JAVA BYTECODE EXAMPLE

Method Main()

0 aload_0

1 invokespecial #1 <Method java.lang.Object()>

4 return

Method void main(java.lang.String[])

0 getstatic #2 <Field java.io.PrintStream out>

3 ldc #3 <String "Hello world">

5 invokevirtual #4 <Method void println(java.lang.String)>

8 return

CS 403: Intermediate Representations and Code Generation (S. D. Bruda) Winter 2015 4 / 18

CODE GENERATION

Code generation translates an AST into some low-ish level language (IR
or assembly)
It is a typical recursive walk through the tree
Examples:

To translate E1 + E2, generate code for E1 and E2 recursively, then generate
code for addition
To translate while (E) B generate code for E (recursively), generate code for
branching to the end of the loop when E is false, generate code for B
(recursively), then generate a jump at the beginning of the code for E
Etc.

The actual process of generating code depends heavily on the target
language

CS 403: Intermediate Representations and Code Generation (S. D. Bruda) Winter 2015 5 / 18

THREE-ADDRESS CODE (TAC)

Three-address code (TAC) is essentially a generic assembly language
Falls in the lower-end of the mid-level IRs
Variants commonly used as an IR, since it maps well to most assembly
languages

A TAC instruction can have at most three operands
The operands could be two operands to a binary arithmetic operator with the
third being the result location, or an operand to compare to zero and a
second location to branch to, etc.

High-level TAC

a = b * c + b * d;

_t1 = b * c;

_t2 = b * d;

_t3 = _t1 + _t2;

a = _t3;

if (a < b + c)

a = a - c;

c = b * c;

_t1 = b + c;

_t2 = a < _t1;

IfZ _t2 Goto _L0;

_t3 = a - c;

a = _t3;

_L0: _t4 = b * c;

c = _t4;

CS 403: Intermediate Representations and Code Generation (S. D. Bruda) Winter 2015 6 / 18

TAC EXAMPLES (CONT’D)

High-level TAC

n = ReadInteger();

Foo(vec[n]);

_t0 = LCall _ReadInteger;

n = _t0;

_t1 = 4;

_t2 = _t1 * n;

_t3 = vec + _t2;

_t4 = *(_t3);

PushParam _t4;

LCall _Foo;

PopParams 4;

CS 403: Intermediate Representations and Code Generation (S. D. Bruda) Winter 2015 7 / 18

DECAF TAC INSTRUCTIONS

Assignment: t2 = t1; t1 = "abcdefg"; t3 = L0;
The rvalue can be a variable, literal, or label

Arithmetic: t3 = t2 + t1; t3 = t2 - t1; t3 = t2 * t1;
t3 = t2 / t1; t3 = t2 % t1;

Other operators must be synthesized using the available primitives
Relational, equality, and logical: t3 = t2 == t1; t3 = t2 < t1;

t3 = t2 && t1; t3 = t2 || t1;
Other operators must be synthesized using the available primitives

Labels and branches: L1: Goto L1; IfZ t1 Goto L1; (branch if t1 is
zero)
Parameters:

Before making a call parameters must be pushed from right to left:
PushParam t1;

Upon returning from the call the parameters must be popped using
PopParams x; where x is the number of bytes to be popped

Function/method call: LCall L1; t1 = LCall L1;
ACall t1; t0 = ACall t1;

LCall is for function labels known at compile time, while ACall is for
computed function addresses (most often from vtables)
Note the different uses for void and non-void functions

CS 403: Intermediate Representations and Code Generation (S. D. Bruda) Winter 2015 8 / 18

DECAF TAC INSTRUCTIONS (CONT’D)

Function/method definition: BeginFunc 12; . . . EndFunc;

The argument for BeginFunc is the size in bytes of the space needed for all
locals in the stack frame
Returning from a function: Return t1; Return;

Memory reference: t1 = *(t2); t1 = *(t2 + 8);
*(t1) = t2; *(t1 + -4) = t2;

The (optional) offset must be an integer constant and can be positive or
negative
Array indexing is done by adding to the base address the offset multiplied by
the size of the element of the array

Object fields and method dispatch:
To access member variables add offset to base and dereference
To access methods retrieve the address of the method from the vrable and
then use ACall

Method specification: VTable ClassName = L1, L2, ...;

CS 403: Intermediate Representations and Code Generation (S. D. Bruda) Winter 2015 9 / 18

DECAF LIBRARY FUNCTIONS

Alloc → one integer parameter, returns address of heap-allocated
memory of that size in bytes
ReadLine → no parameters, returns string read from user input
ReadInteger → no parameters, returns integer read from user input
StringEqual → two string parameters, returns 1 if strings are equal and

0 otherwise
PrintInt → one integer parameter, prints that number to the console
PrintString → one string parameter, prints that string to the console
PrintBool → one boolean parameter, prints true/false to the console
Halt → no parameters, stops program execution

CS 403: Intermediate Representations and Code Generation (S. D. Bruda) Winter 2015 10 / 18

DECAF TRANSLATION EXAMPLES

Translating DECAF into TAC means generating the TAC program but also
figuring out temporary variables, creating labels, calling functions, etc.
Simplifying assumptions: no double type, booleans are 4-bit integers, all
the integers and pointers (for classes, arrays, strings) have a size of 4
bytes
void main() { main:

Print("hello world"); BeginFunc 4;

} _t0 = "hello world";

PushParam _t0;

LCall _PrintString;

PopParams 4;

EndFunc;

Go down from the Program node into the declaration list that has one
element (the function main)
Generate the function label and the BeginFunc (leaving a placeholder for the
size)
Generate recursively the body of the function (one single call)
Come back and fill in the parameter of BeginFunc
Generate the function postamble

CS 403: Intermediate Representations and Code Generation (S. D. Bruda) Winter 2015 11 / 18

DECAF TRANSLATION EXAMPLES: ARITHMETIC

void main() main: void main() main:

{ BeginFunc 12; { BeginFunc 44;

int a; _t0 = 2; _t0 = 3;

a = 2 + a; _t1 = _t0 + a; int b; b = _t0;

Print(a); a = _t1; int a; _t1 = 12;

} PushParam a; a = _t1;

LCall _PrintInt; b = 3; _t2 = 2;

PopParams 4; a = 12; _t3 = b + _t2;

EndFunc; a = (b + 2)- _t4 = 3;

(a*3)/6; _t5 = a * _t4;

} _t6 = 6;

_t7 = _t5 / _t6;

_t8 = _t3 - _t7;

a = _t8;

EndFunc;

CS 403: Intermediate Representations and Code Generation (S. D. Bruda) Winter 2015 12 / 18

DECAF TRANSLATION EXAMPLES: ARRAYS

void Foo(int[] arr) _Foo:

{ BeginFunc 44;

arr[1] = arr[0] * 2; _t0 = 1;

} _t1 = 4;

_t2 = _t1 * _t0;

_t3 = arr + _t2;

_t4 = 0;

_t5 = 4;

_t6 = _t5 * _t4;

_t7 = arr + _t6;

_t8 = *(_t7);

_t9 = 2;

_t10 = _t8 * _t9;

*(_t3) = _t10;

EndFunc;

CS 403: Intermediate Representations and Code Generation (S. D. Bruda) Winter 2015 13 / 18

DECAF TRANSLATION EXAMPLES: FUNCTIONS

int foo(int a, int b) _foo:

{ BeginFunc 4;

return a + b; _t0 = a + b;

} Return _t0;

EndFunc;

void main() main:

{ BeginFunc 12;

int c; PushParam d;

int d; PushParam c;

_t1 = LCall _foo;

foo(c, d); PopParams 8;

} EndFunc;

CS 403: Intermediate Representations and Code Generation (S. D. Bruda) Winter 2015 14 / 18

DECAF TRANSLATION EXAMPLES: CLASSES

class Animal { _Animal.InitAnimal: _Foo:
int height; BeginFunc 0; BeginFunc 12;
void InitAnimal(int h) { *(this + 4) = h; _t2 = 5;

this.height = h; EndFunc; _t3 = *(betsy);
} _t4 = *(_t3 + 4);

} VTable Animal = PushParam _t2;
_Animal.InitAnimal, PushParam betsy;

class Cow extends Animal { ; ACall _t4;
void InitCow(int h) { PopParams 8;

InitAnimal(h); _Cow.InitCow: EndFunc;
} BeginFunc 8;

} _t0 = *(this);
_t1 = *(_t0);

void Foo(Cow betsy) { PushParam h;
betsy.InitCow(5); PushParam this;

} ACall _t1;
PopParams 8;
EndFunc;

VTable Cow =
_Animal.InitAnimal,
_Cow.InitCow,

;

Note how this is passed as a “secret” first argument to a method calls!

CS 403: Intermediate Representations and Code Generation (S. D. Bruda) Winter 2015 15 / 18

DECAF TRANSLATION EXAMPLES: CONDITIONALS

void main() main:

{ BeginFunc 24;

int a; _t0 = 23;

a = _t0;

a = 23; _t1 = 23;

if (a == 23) _t2 = a == _t1;

a = 10; IfZ _t2 Goto _L0;

else _t3 = 10;

a = 19; a = _t3;

} Goto _L1;

_L0:

_t4 = 19;

a = _t4;

_L1:

EndFunc;

CS 403: Intermediate Representations and Code Generation (S. D. Bruda) Winter 2015 16 / 18

DECAF TRANSLATION EXAMPLES: LOOPS

void main() main:

{ BeginFunc 40;

int a; _t0 = 0;

a = 0; a = _t0;

_L0:

while (a < 10) { _t1 = 10;

Print(a % 2 == 0); _t2 = a < _t1;

a = a + 1; IfZ _t2 Goto _L1;

} _t3 = 2;

} _t4 = a % _t3;

_t5 = 0;

_t6 = _t4 == _t5;

PushParam _t6;

LCall _PrintBool;

PopParams 4;

_t7 = 1;

_t8 = a + _t7;

a = _t8;

Goto _L0;

_L1:

EndFunc;

CS 403: Intermediate Representations and Code Generation (S. D. Bruda) Winter 2015 17 / 18

STORAGE ALLOCATION

The code generator, you must assign a location to each local variable,
parameter, and temporary variable
These locations occur in a particular stack frame (relative to the frame
pointer fp in MIPS) and are called fp-relative

Parameters begin at address fp + 4 and grow upward
Locals and temporaries begin at address fp - 8 and grow downward

From your point of view:
Location* location =

new Location(fpRelative, +4, locName);

Global variables are stored starting from the MIPS global pointer (gp)
Memory pointed at by gp is treated as an array of values that grows upward
(starting at gp+0)
Must choose an offset into this array for each global variable

From your point of view:
Location* global =

new Location(gpRelative, +8, locName);

CS 403: Intermediate Representations and Code Generation (S. D. Bruda) Winter 2015 18 / 18

STORAGE ALLOCATION

The code generator, you must assign a location to each local variable,
parameter, and temporary variable
These locations occur in a particular stack frame (relative to the frame
pointer fp in MIPS) and are called fp-relative

Parameters begin at address fp + 4 and grow upward
Locals and temporaries begin at address fp - 8 and grow downward

From your point of view:
Location* location =

new Location(fpRelative, +4, locName);

Global variables are stored starting from the MIPS global pointer (gp)
Memory pointed at by gp is treated as an array of values that grows upward
(starting at gp+0)
Must choose an offset into this array for each global variable

From your point of view:
Location* global =

new Location(gpRelative, +8, locName);

CS 403: Intermediate Representations and Code Generation (S. D. Bruda) Winter 2015 18 / 18

