CS 406: Lexical Analysis

Stefan D. Bruda

Winter 2016

EXAMPLE OF TOKENS AND ATTRIBUTES

THE LEXICAL ANALYZER

@ Main role: split the input character stream into tokens
e Usually even interacts with the symbol table, inserting identifiers in it
(especially useful for languages that do not require declarations)
e This simplifies the design and portability of the parser
@ A token is a data structure that contains:

e The token name = abstract symbol representing a kind of lexical unit
@ A possibly empty set of attributes

@ A pattern is a description of the form recognized in the input as a
particular token

@ Alexeme is a sequence of characters in the source program that matches
a particular pattern of a token and so represents an instance of that token

@ Most programming languages feature the following tokens

@ One token for each keyword

@ One token for each operator or each class of operators (e.g., relational

operators)

o One token for all identifiers

@ One or more tokens for literals (numerical, string, etc.)

@ One token for each punctuation symbol (parentheses, commata, etc.)

CS 406: Lexical Analysis (S. D. Bruda) Winter 2016

INPUT BUFFERING

printf("Score = %d\n", score);

Lexeme Token Attribute
printf id pointer to symbol table entry
(open_paren
"Score = %d\n" string
, comma
score id pointer to symbol table entry
) cls_paren
; semicolon
E=Mx%C %% 2
Lexeme Token Attribute
E id pointer to symbol table entry
= assign
M id pointer to symbol table entry
* mul
C id pointer to symbol table entry
*k exp

2 int_num numerical value 2

CS 406: Lexical Analysis (S. D. Bruda) Winter 2016 2/21

@ Buffering is often used to speed up the process of recognizing lexemes
o Also facilitates the process of looking ahead beyond the current lexeme
@ Typical buffer arrangement:
o Two buffers of size N = the size of a disk sector (usually 4096 bytes)
o One buffer is loaded while the other is being processed
@ One system call fills in a whole buffer
e Two pointers per buffer: lexemeBegin (the beginning of the current lexeme)
and forward (moves forward until a pattern is found, but can also move
backward)

@ Problem: each time we advance the forward pointer we need to tests:
one for the current character, the other for the end of the buffer

e Solution: place a special sentinel character (e.g., EOF) at the end of the buffer
@ A single test will then suffice

CS 406: Lexical Analysis (S. D. Bruda) Winter 2016 3/21

SPECIFICATION OF TOKENS

!”_:\
SYNTACTIC SUGAR FOR REGULAR EXPRESSIONS ==

@ Token patterns are simple enough so that they can be specified using

regular expressions

@ Alphabet X: a finite set of symbols (e.g. binary digits, ASCII)
@ Strings (not sets!) over an alphabet; empty string: ¢

o Useful operation: concatenation (- or juxtaposition)
o ¢ is the identity for concatenation (ew = we = w)

@ Language: a countable set of strings
@ Abuse of notation: For a € & we write a instead of {a}

o Useful elementary operations: union (U, +, |) and concatenation (- or

juxtaposition): Lilo =Ly L = {W1 Wo: Wy €EL1 AWs € Lg}

o Exponentiation: L" = {wiws - --w,, : V1 < i< n:w € L} (sothat L° = {¢})

e Kleene closure: L* = J,5, L"
e Positive closure: L = |J,.,L"

@ An expression containing only symbols from ¥, ¢,), union,

concatenation, and Kleene closure is called a regular expression
o A language described by a regular expression is a regular language

CS 406: Lexical Analysis (S. D. Bruda)

EXAMPLES OF REGULAR DEFINITIONS

Winter 2016

Notation Regular expression

rt r* one or more instances (positive closure)

r? rleorr+eorrUe zeroorone instance

[a1a2---an ailaz| - |an character class

[a1 — an] ailag|--|an provided that a1, a, ...a, are in se-
quence

[(@ar1az- - ap) anything except ay, a, ... an

["a1 — an]

@ The tokens in a programming language are usually given as regular
definitions = collection of named regular languages

CS 406: Lexical Analysis (S. D. Bruda) Winter 2016 5/21

STATE TRANSITION DIAGRAMS

letter_
digit

id
digits
fraction
exp
number
if

then
else
rel_op

CS 406: Lexical Analysis (S. D. Bruda)

[A-Za—z]

[0-9]

letter_ (letter_ | digit)*
digit™

. digits

E [+-]? digits

digits fraction? exp?
if

then

else

Winter 2016

6/21

@ Also called deterministic finite automata (DFA)

@ Finite directed graph

@ Edges (transitions) labeled with symbols from an alphabet

@ Nodes (states) labeled only for convenience ;

@ One initial state OW 0
@ Several accepting states \1J

@ Astring cicoCs . . . ¢ is accepted by a state transition diagram if there
exists a path from the starting state to an accepting state such that the

sequence of labels along the pathis ¢y, ¢, ..., ¢y
C4 Co C3 Cn
—O—CO0—0O—0——0—40)

e Same state might be visited more than once
o Intermediate states might be final

@ The set of exactly all the strings accepted by a state transition diagram is
the language accepted (or recognized) by the state transition diagram

CS 406: Lexical Analysis (S. D. Bruda) Winter 2016 7/21

SOFTWARE REALIZATION

@ Big practical advantages of DFA: very easy to implement: typedef enum {ZERO, ONE, EOS} vocab;
o Interface to define a vocabulary and a function to obtain the input tokens
typename vocab; /* alphabet + end-of-string */ vocab gettoken(void) {
const vocab EOS; /* end-of-string pseudo-token */ int ¢ = getc(stdin);
vocab gettoken(void); /* returns next token */ if (¢ == ’0’) return ZERO;
o Variable (state) changed by a simple switch statement as we go along if (¢ == ’1’) return ONE;
int main (void) { if (¢ == ’\n’) return EOS;
typedef enum {SO, S1, ... } state; perror("illegal character"); 3
state s = S0; vocab t = gettoken();
while (t != E0S) { int main (void) {
switch (s) { typedef enum {SO, S1 } state;
case S0: if (¢t == ...) s .; break; state s = 50; vocab t = gettoken();
if (¢ == ...) s .; break; while (t != E0S) {
switch (s) {
case S1i: case SO0: if (t == ONE) s = S1; break;
. /* if (t == ZERO) s = SO; break */
} /% switch */ case S1: if (t == ONE) s = S0; break;
t = gettoken(); 1} /* while */ /* if (t == ZERD) s = S1; break */ } /* switch */
/* accept iff the current state s is final */ t = gettoken(); } /* while */
} if (s != SO) printf("String not accepted.\n"); }
CS 406: Lexical Analysis (S. D. Bruda) Winter 2016 8/21 CS 406: Lexical Analysis (S. D. Bruda) Winter 2016 9/21

@ The LEX language is a programming language particularly suited for
working with regular expressions

e Actions can also be specified as fragments of C/C++ code

@ The LEX compiler compiles the LEX language (e.g., scanner.1) into
C/C++ code (lex.yy.c)
e The resulting code is then compiled to produce the actual lexical analyzer
e The use of this lexical analyzer is through repeatedly calling the function
yylex () which will return a new token at each invocation
e The attribute value (if any) is placed in the global variable yylval
o Additional global variable: yytext (the lexeme)

@ Structure of a LEX program: @ Declarations include variables,
Declarations constants, regular definitions
W e Transition rules have the form
t/r;“‘ nslation rules Pattern { Action }
auxiliary functions where the pattern is a regular

expression and the action is
arbitrary C/C++ code

When returning from *-ed states must re-
tract last character

CS 406: Lexical Analysis (S. D. Bruda) Winter 2016 10/21 CS 406: Lexical Analysis (S. D. Bruda) Winter 2016 11/21

LEX BEHAVIOUR

8y
NONDETERMINISTIC STATE TRANSITION DIAGRAMS <~

@ LEX compile the given regular expressions into one big state transition
diagram, which is then repeatedly run on the input
@ LEX conflict resolution rules:
o Always prefer a longer to a shorter lexeme
o If the longer lexeme matches more than one pattern then prefer the pattern
that comes first in the LEX program
@ LEX always reads one character ahead, but then retracts the lookahead
character upon returning the token
o Only the lexeme itself in therefore consumed

CS 406: Lexical Analysis (S. D. Bruda) Winter 2016 12/21

SOFTWARE REALIZATION

@ As for the deterministic version, except that we have to keep track of a set
of states at any given time
typedef enum { QO, Q1, Q2, Q3 } state;

int main (void) {
vocab t = gettoken(); StateSet A;
while (t != EO0S) {
StateSet NewA;
for (state s in A) {
switch (s) {

A.include(QO);

case QO: NewA.include(QO);
if (¢t == ’m’) NewA.include(Ql); break;
case Q1: if (t == ’a’) NewA.include(Q2); break;
case Q2: if (t == ’n’) NewA.include(Q3); break;
case Q3: break;
}
}
A = NewA; t = gettoken();

}
/* accept iff (Q3 in A) =/
}

CS 406: Lexical Analysis (S. D. Bruda) Winter 2016 14/21

@ Deterministic = for any pair (state, input symbol) there can be at most one
outgoing transition . ®
@ A nondeterministic diagram allows for the following situation: (@)
o . _ i)
@ The acceptance condition remains unchanged:

@ Astring cicaCs . . . Cp is accepted by a state transition diagram if there exists
some path from the starting state to an accepting state such that the
sequence of labels along the pathis ¢1, ¢, ..., ¢y

@ Why nondeterminism?
e Simplifies the construction of the diagram
)y m a n
@ A nondeterministic diagram can be much smaller than the smallest possible
deterministic state diagram that recognizes the same language
@ Also known as nondeterministic finite automata (NFA)

CS 406: Lexical Analysis (S. D. Bruda) Winter 2016 13/21

SOFTWARE REALIZATION (CONT’D)

@ This kind of implementation is fine for “throw-away” automata
e Text editor search function searches for a pattern in the text
e The next search is likely to be different so a brand new automaton needs to
be created

@ Some times the automaton is created once and then used multiple times

o The lexical structure of a programming language is well established
o Lexical analysis in a compiler is accomplished by an automaton that never
changes
@ In such a case it is more efficient to precalculate the set of states
@ Exactly as in the previous program
@ Except that we no longer have an input to guide us, so we calculate the sets
NewA for all possible inputs
@ We obtain a DFA that is equivalent to the given NFA (i.e., recognizes the same
language)

CS 406: Lexical Analysis (S. D. Bruda) Winter 2016 15/21

c-TRANSITIONS ELIMINATING s-TRANSITIONS

For every diagram M with e-transitions a new diagram without e-transitions
can be constructed as follows:

@ Make a copy M’ of M where the e-transitions have been removed.

) N N Remove states that have only e-transitions coming in except for the
@ Useful at times to have “spontaneous” transitions = transitions that starting state

change the state without any input being read = =-transitions
@ Only available for nondeterministic state transition diagrams!

@ Example of usefulness: Construct the state transition diagram for the

@ Add transitions to M’ as follows: whenever M has a chain of s-transitions
followed by a “real” transition on x:

language @=0= - 5050
{0,1}701{0,1}" + {w € {0,1}" : w has an even number of 1's} add to M’ a transition from state q to state p labeled by x:
@ Even better e-transitions can be eliminated afterward @@

o Note that g and p may be any states
o In particular this step is also used in the case where g = p

@ If M has a chain of e-transitions from a state r to an accepting state, then
r is made to be an accepting state of M.

CS 406: Lexical Analysis (S. D. Bruda) Winter 2016 16/21 CS 406: Lexical Analysis (S. D. Bruda) Winter 2016 17/21

P X

FROM REGULAR EXPRESSIONS TO FA - M FROM REGULAR EXPRESSIONS TO FA (CONT'D) ==

@ Construct a finite automaton for every elementary regular expression (g,
xex,0):

€ x @ We start from the following two automata:
—O——0 —O———0

o W0 Q-e

@ Then starting from component finite automata we show how we can)
construct finite automata for each possible operator appearing in regular @ Union
expressions (+, -, *)

o Useful operation: merging two states

0T - o - O

o Properties to be maintained:
@ One accepting state
@ Initial state different from the accepting state
@ No transitions out of the accepting state

or

CS 406: Lexical Analysis (S. D. Bruda) Winter 2016 18/21 CS 406: Lexical Analysis (S. D. Bruda) Winter 2016 19/21

P2 LE 2 !”;
FROM REGULAR EXPRESSIONS TO FA (CONT'D) . FROM REGULAR EXPRESSIONS TO FA (CONT'D) v

@ All regular expressions can be converted step by step to the equivalent
finite automaton by using these constructions

@ Concatenation @ Closure o Construct a tree that Example: 1(e + 0)*0*

represents the operations @ FAfore

in the regular expression

merge
‘ ¢ @ Leafs are labeled with © FAfor0 1/ \
elementary regular FAfore +0
@ expressions o . / \
o Internal nodes are © FAfor (¢ +0)

labeled with operation,
and their children are Q FAforo l l

S
@

() 1 ¢

the operands Q FAforo0* (3) + 08
o Traverse the tree from @ FAfor (¢ + 0)*0* / \
leaves to root using the O FA for 1

previous constructions
@ FAfori(s+0)*0*

@ The finite automaton thus obtained can either be converted into a
deterministic finite automaton or realized as is

CS 406: Lexical Analysis (S. D. Bruda) Winter 2016 20/21 CS 406: Lexical Analysis (S. D. Bruda) Winter 2016 21/21

