THE LEXICAL Analyzer

- **Main role:** split the input character stream into tokens
 - Usually even interacts with the symbol table, inserting identifiers in it (especially useful for languages that do not require declarations)
 - This simplifies the design and portability of the parser

- **A token** is a data structure that contains:
 - The *token name* = abstract symbol representing a kind of lexical unit
 - A possibly empty set of *attributes*

- A *pattern* is a description of the form recognized in the input as a particular token

- A *lexeme* is a sequence of characters in the source program that matches a particular pattern of a token and so represents an instance of that token

Most programming languages feature the following tokens

- One token for each keyword
- One token for each operator or each class of operators (e.g., relational operators)
- One token for all identifiers
- One or more tokens for literals (numerical, string, etc.)
- One token for each punctuation symbol (parentheses, commata, etc.)

EXAMPLE OF TOKENS AND ATTRIBUTES

```c
printf("Score = %d\n", score);
```

<table>
<thead>
<tr>
<th>Lexeme</th>
<th>Token</th>
<th>Attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td>printf</td>
<td>id</td>
<td>pointer to symbol table entry</td>
</tr>
<tr>
<td>(</td>
<td>open_paren</td>
<td></td>
</tr>
<tr>
<td>"Score = %d\n"</td>
<td>string</td>
<td></td>
</tr>
<tr>
<td>,</td>
<td>comma</td>
<td></td>
</tr>
<tr>
<td>score</td>
<td>id</td>
<td>pointer to symbol table entry</td>
</tr>
<tr>
<td>)</td>
<td>cls_paren</td>
<td></td>
</tr>
<tr>
<td>;</td>
<td>semicolon</td>
<td></td>
</tr>
</tbody>
</table>

```c
E = M * C ** 2
```

<table>
<thead>
<tr>
<th>Lexeme</th>
<th>Token</th>
<th>Attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>id</td>
<td>pointer to symbol table entry</td>
</tr>
<tr>
<td>=</td>
<td>assign</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>id</td>
<td>pointer to symbol table entry</td>
</tr>
<tr>
<td>*</td>
<td>mul</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>id</td>
<td>pointer to symbol table entry</td>
</tr>
<tr>
<td>**</td>
<td>exp</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>int_num</td>
<td>numerical value 2</td>
</tr>
</tbody>
</table>

INPUT BUFFERING

- Buffering is often used to speed up the process of recognizing lexemes
 - Also facilitates the process of looking ahead beyond the current lexeme

- **Typical buffer arrangement:**
 - Two buffers of size $N = \text{the size of a disk sector (usually 4096 bytes)}$
 - One buffer is loaded while the other is being processed
 - One system call fills in a whole buffer
 - Two pointers per buffer: `lexemeBegin` (the beginning of the current lexeme) and `forward` (moves forward until a pattern is found, but can also move backward)

- **Problem:** each time we advance the forward pointer we need to tests:
 - one for the current character, the other for the end of the buffer

 - **Solution:** place a special *sentinel* character (e.g., `EOF`) at the end of the buffer
 - A single test will then suffice
Specification of Tokens

- Token patterns are simple enough so that they can be specified using regular expressions.
- **Alphabet** Σ: a finite set of symbols (e.g., binary digits, ASCII).
- **Strings** (not sets!) over an alphabet; empty string: ε.
 - Useful operation: concatenation (\cdot or juxtaposition).
 - ε is the identity for concatenation ($\varepsilon w = w = w \varepsilon$).
- **Language**: a countable set of strings.
 - Abuse of notation: For $a \in \Sigma$ we write a instead of $\{a\}$.
 - Useful elementary operations:
 - Union (\cup or $+$) and concatenation (\cdot or juxtaposition): $L_1 \cup L_2 = \{ w_1 w_2 : w_1 \in L_1 \wedge w_2 \in L_2 \}$.
 - Exponentiation: $L^n = \{ w^n : w \in L \}$ (so that $L^0 = \{ \varepsilon \}$).
 - Kleene closure: $L^* = \bigcup_{n \geq 0} L^n$.
 - Positive closure: $L^+ = \bigcup_{n > 0} L^n$.
- An expression containing only symbols from Σ, ε, \emptyset, union, concatenation, and Kleene closure is called a regular expression.
 - A language described by a regular expression is a regular language.

Examples of Regular Definitions

- **letter**: $[A−Za−z]$.
- **digit**: $[0−9]$.
- **id**: letter_ $(\text{letter}_- | \text{digit})^*$.
- **digits**: digit*.
- **fraction**: . digits.
- **exp**: $E [\{+-\}]$ digits.
- **number**: digits fraction? exp?.
- **if**: $i \ f$.
- **then**: $t h e n$.
- **else**: $e l s e$.
- **rel_op**: $< | > | <= | >= | == | !=$.

Syntactic Sugar for Regular Expressions

<table>
<thead>
<tr>
<th>Notation</th>
<th>Regular expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>r^+</td>
<td>rr^*</td>
</tr>
<tr>
<td>$r?$</td>
<td>$r</td>
</tr>
<tr>
<td>$[a_1 a_2 \cdots a_n]$</td>
<td>$a_1</td>
</tr>
<tr>
<td>$[a_1 a_2 \cdots a_n]$</td>
<td>$[a_1</td>
</tr>
</tbody>
</table>

State Transition Diagrams

- Also called deterministic finite automata (DFA).
- Finite directed graph.
- Edges (transitions) labeled with symbols from an alphabet.
- Nodes (states) labeled only for convenience.
- One initial state.
- Several accepting states.
- A string $c_1 c_2 c_3 \ldots c_n$ is accepted by a state transition diagram if there exists a path from the starting state to an accepting state such that the sequence of labels along the path is c_1, c_2, \ldots, c_n.

 - Same state might be visited more than once.
 - Intermediate states might be final.
- The set of exactly all the strings accepted by a state transition diagram is the language accepted (or recognized) by the state transition diagram.
software realization

big practical advantages of dfa: very easy to implement:
structure to define a vocabulary and a function to obtain the input tokens

typename vocab; /* alphabet + end-of-string */
const vocab EOS; /* end-of-string pseudo-token */
vocab gettoken(void); /* returns next token */

variable (state) changed by a simple switch statement as we go along

int main (void) {
typedef enum {s0, s1, ... } state;
state s = s0; vocab t = gettoken();
while (t != eos) {
 switch (s) {
 case s0: if (t == ...) s = ...; break;
 if (t == ...) s = ...; break;
 ...
 case s1: ...
 ...
 } /* switch */
 t = gettoken(); } /* while */
/* accept iff the current state s is final */
}

examples of state transition diagrams

when returning from *-ed states must retract last character

lex, the lexical analyzer generator

the lex language is a programming language particularly suited for working with regular expressions
actions can also be specified as fragments of c/c++ code

the lex compiler compiles the lex language (e.g., scanner.l) into c/c++ code (lex.yy.c)
the resulting code is then compiled to produce the actual lexical analyzer
the use of this lexical analyzer is through repeatedly calling the function yylex() which will return a new token at each invocation
the attribute value (if any) is placed in the global variable yylval
additional global variable: yytext (the lexeme)

structure of a lex program:

declarations

% translation rules
% auxiliary functions

declarations include variables, constants, regular definitions
transition rules have the form

pattern { action }

where the pattern is a regular expression and the action is arbitrary c/c++ code
Lex Behaviour

- **LEX** compile the given regular expressions into one big state transition diagram, which is then repeatedly run on the input.
- **LEX** conflict resolution rules:
 - Always prefer a longer to a shorter lexeme.
 - If the longer lexeme matches more than one pattern then prefer the pattern that comes first in the **LEX** program.
- **LEX** always reads one character ahead, but then retracts the lookahead character upon returning the token.
 - Only the lexeme itself is therefore consumed.

Nondeterministic State Transition Diagrams

- **Deterministic** = for any pair (state, input symbol) there can be at most one outgoing transition.
- A **nondeterministic** diagram allows for the following situation:
 - The acceptance condition remains unchanged:
 - A string $c_1c_2c_3\ldots c_n$ is accepted by a state transition diagram if there exists some path from the starting state to an accepting state such that the sequence of labels along the path is c_1, c_2, \ldots, c_n.
- Why nondeterminism?
 - **Simplifies the construction** of the diagram.
 - A nondeterministic diagram can be **much smaller** than the smallest possible deterministic state diagram that recognizes the same language.
 - **Also known as** nondeterministic finite automata (NFA).

Software Realization

- As for the deterministic version, except that we have to keep track of a set of states at any given time.
  ```c
typedef enum { Q0, Q1, Q2, Q3 } state;

int main (void) {
  vocab t = gettoken(); StateSet A; A.include(Q0);
  while (t != EOS) {
    StateSet NewA;
    for (state s in A) {
      switch (s) {
        case Q0: NewA.include(Q0);
          if (t == 'm') NewA.include(Q1); break;
        case Q1: if (t == 'a') NewA.include(Q2); break;
        case Q2: if (t == 'n') NewA.include(Q3); break;
        case Q3: break;
      }
      A = NewA; t = gettoken();
    } /* accept iff (Q3 in A) */
  }
}
```

Software Realization (cont’d)

- This kind of implementation is fine for “throw-away” automata.
 - Text editor search function searches for a pattern in the text.
 - The next search is likely to be different so a brand new automaton needs to be created.
- Some times the automaton is created once and then used multiple times.
 - The lexical structure of a programming language is well established.
 - Lexical analysis in a compiler is accomplished by an automaton that never changes.
 - In such a case it is more efficient to **precalculate the set of states**.
 - Exactly as in the previous program.
 - Except that we no longer have an input to guide us, so we calculate the sets NewA for all possible inputs.
 - We obtain a DFA that is **equivalent** to the given NFA (i.e., recognizes the same language).
ε-TRANSITIONS

- Useful at times to have “spontaneous” transitions = transitions that change the state without any input being read = ε-transitions
- Only available for nondeterministic state transition diagrams!
- Example of usefulness: Construct the state transition diagram for the language
 \[
 \{0, 1\}^* 01 \{0, 1\}^* + \{w \in \{0, 1\}^* : w \text{ has an even number of } 1\text{'s}\}
 \]
- Even better ε-transitions can be eliminated afterward

From Regular Expressions to FA

- Construct a finite automaton for every elementary regular expression (ε, x ∈ Σ, ()):
 \[
 \begin{array}{c}
 \epsilon \\
 x \\
 \end{array}
 \]
- Then starting from component finite automata we show how we can construct finite automata for each possible operator appearing in regular expressions (+, *,)
 - Useful operation: merging two states
 - Properties to be maintained:
 - One accepting state
 - Initial state different from the accepting state
 - No transitions out of the accepting state

ELIMINATING ε-TRANSITIONS

For every diagram \(M \) with ε-transitions a new diagram without ε-transitions can be constructed as follows:

- Make a copy \(M' \) of \(M \) where the ε-transitions have been removed.
- Remove states that have only ε-transitions coming in except for the starting state
- Add transitions to \(M' \) as follows: whenever \(M \) has a chain of ε-transitions followed by a “real” transition on \(x \):
 \[
 \begin{array}{c}
 \epsilon \\
 \epsilon \\
 \epsilon \\
 \epsilon \\
 \end{array} \xrightarrow{\cdot} \begin{array}{c}
 \epsilon \\
 \epsilon \\
 \epsilon \\
 \epsilon \\
 \end{array} \xrightarrow{x} \begin{array}{c}
 \epsilon \\
 \epsilon \\
 \epsilon \\
 \epsilon \\
 \end{array} \xrightarrow{\cdot} \begin{array}{c}
 \epsilon \\
 \epsilon \\
 \epsilon \\
 \epsilon \\
 \end{array}
 \]
- Note that \(q \) and \(p \) may be any states
- In particular this step is also used in the case where \(q = p \)
- If \(M \) has a chain of ε-transitions from a state \(r \) to an accepting state, then \(r \) is made to be an accepting state of \(M' \).
All regular expressions can be converted step by step to the equivalent finite automaton by using these constructions:

- **Concatenation**
- **Closure**

Example: $(\varepsilon + 0)^*0$

- FA for ε
- FA for 0
- FA for $\varepsilon + 0$
- FA for $(\varepsilon + 0)^*$
- FA for 0
- FA for 0^*
- FA for $(\varepsilon + 0)^*0$
- FA for 1
- FA for $1(\varepsilon + 0)^*0$

The finite automaton thus obtained can either be converted into a deterministic finite automaton or realized as is.