
CS 406: Lexical Analysis

Stefan D. Bruda

Winter 2016

THE LEXICAL ANALYZER

Main role: split the input character stream into tokens
Usually even interacts with the symbol table, inserting identifiers in it
(especially useful for languages that do not require declarations)
This simplifies the design and portability of the parser

A token is a data structure that contains:
The token name = abstract symbol representing a kind of lexical unit
A possibly empty set of attributes

A pattern is a description of the form recognized in the input as a
particular token
A lexeme is a sequence of characters in the source program that matches
a particular pattern of a token and so represents an instance of that token
Most programming languages feature the following tokens

One token for each keyword
One token for each operator or each class of operators (e.g., relational
operators)
One token for all identifiers
One or more tokens for literals (numerical, string, etc.)
One token for each punctuation symbol (parentheses, commata, etc.)

CS 406: Lexical Analysis (S. D. Bruda) Winter 2016 1 / 21

EXAMPLE OF TOKENS AND ATTRIBUTES

printf("Score = %d\n", score);

Lexeme Token Attribute
printf id pointer to symbol table entry
(open paren
"Score = %d\n" string
, comma
score id pointer to symbol table entry
) cls paren
; semicolon

E = M * C ** 2

Lexeme Token Attribute
E id pointer to symbol table entry
= assign
M id pointer to symbol table entry
* mul
C id pointer to symbol table entry
** exp
2 int num numerical value 2

CS 406: Lexical Analysis (S. D. Bruda) Winter 2016 2 / 21

INPUT BUFFERING

Buffering is often used to speed up the process of recognizing lexemes
Also facilitates the process of looking ahead beyond the current lexeme

Typical buffer arrangement:
Two buffers of size N = the size of a disk sector (usually 4096 bytes)
One buffer is loaded while the other is being processed
One system call fills in a whole buffer
Two pointers per buffer: lexemeBegin (the beginning of the current lexeme)
and forward (moves forward until a pattern is found, but can also move
backward)

Problem: each time we advance the forward pointer we need to tests:
one for the current character, the other for the end of the buffer

Solution: place a special sentinel character (e.g., EOF) at the end of the buffer
A single test will then suffice

CS 406: Lexical Analysis (S. D. Bruda) Winter 2016 3 / 21

SPECIFICATION OF TOKENS

Token patterns are simple enough so that they can be specified using
regular expressions
Alphabet Σ: a finite set of symbols (e.g. binary digits, ASCII)
Strings (not sets!) over an alphabet; empty string: ε

Useful operation: concatenation (· or juxtaposition)
ε is the identity for concatenation (εw = wε = w)

Language: a countable set of strings
Abuse of notation: For a ∈ Σ we write a instead of {a}
Useful elementary operations: union (∪, +, |) and concatenation (· or
juxtaposition): L1L2 = L1 · L2 = {w1w2 : w1 ∈ L1 ∧ w2 ∈ L2}
Exponentiation: Ln = {w1w2 · · ·wn : ∀ 1 ≤ i ≤ n : wi ∈ L} (so that L0 = {ε})
Kleene closure: L∗ =

⋃
n≥0 Ln

Positive closure: L+ =
⋃

n>0 Ln

An expression containing only symbols from Σ, ε, ∅, union,
concatenation, and Kleene closure is called a regular expression

A language described by a regular expression is a regular language

CS 406: Lexical Analysis (S. D. Bruda) Winter 2016 4 / 21

SYNTACTIC SUGAR FOR REGULAR EXPRESSIONS

Notation Regular expression
r+ rr∗ one or more instances (positive closure)
r? r |ε or r + ε or r ∪ ε zero or one instance
[a1a2 · · · an] a1|a2| · · · |an character class
[a1 − an] a1|a2| · · · |an provided that a1, a2, . . . an are in se-

quence
[â1a2 · · · an] anything except a1, a2, . . . an
[â1 − an]

The tokens in a programming language are usually given as regular
definitions = collection of named regular languages

CS 406: Lexical Analysis (S. D. Bruda) Winter 2016 5 / 21

EXAMPLES OF REGULAR DEFINITIONS

letter = [A− Za− z]

digit = [0− 9]

id = letter (letter | digit)∗

digits = digit+

fraction = . digits
exp = E [+−]? digits

number = digits fraction? exp?

if = i f
then = t h e n
else = e l s e

rel op = < | > | <= | >= | == | ! =

CS 406: Lexical Analysis (S. D. Bruda) Winter 2016 6 / 21

STATE TRANSITION DIAGRAMS

Also called deterministic finite automata (DFA)
Finite directed graph
Edges (transitions) labeled with symbols from an alphabet
Nodes (states) labeled only for convenience
One initial state
Several accepting states

0s
1s

0

1

1

0

A string c1c2c3 . . . cn is accepted by a state transition diagram if there
exists a path from the starting state to an accepting state such that the
sequence of labels along the path is c1, c2, . . . , cn

1
c

2
c

3
c

n
c

Same state might be visited more than once
Intermediate states might be final

The set of exactly all the strings accepted by a state transition diagram is
the language accepted (or recognized) by the state transition diagram

CS 406: Lexical Analysis (S. D. Bruda) Winter 2016 7 / 21

SOFTWARE REALIZATION

Big practical advantages of DFA: very easy to implement:
Interface to define a vocabulary and a function to obtain the input tokens

typename vocab; /* alphabet + end-of-string */

const vocab EOS; /* end-of-string pseudo-token */

vocab gettoken(void); /* returns next token */

Variable (state) changed by a simple switch statement as we go along
int main (void) {

typedef enum {S0, S1, ... } state;

state s = S0; vocab t = gettoken();

while (t != EOS) {

switch (s) {

case S0: if (t == ...) s = ...; break;

if (t == ...) s = ...; break;

...

case S1: ...

...

} /* switch */

t = gettoken(); } /* while */

/* accept iff the current state s is final */

}

CS 406: Lexical Analysis (S. D. Bruda) Winter 2016 8 / 21

SOFTWARE REALIZATION: EXAMPLE

typedef enum {ZERO, ONE, EOS} vocab;

vocab gettoken(void) {

int c = getc(stdin);

if (c == ’0’) return ZERO;

if (c == ’1’) return ONE;

if (c == ’\n’) return EOS;

perror("illegal character"); }

int main (void) {

typedef enum {S0, S1 } state;

state s = S0; vocab t = gettoken();

while (t != EOS) {

switch (s) {

case S0: if (t == ONE) s = S1; break;

/* if (t == ZERO) s = S0; break */

case S1: if (t == ONE) s = S0; break;

/* if (t == ZERO) s = S1; break */ } /* switch */

t = gettoken(); } /* while */

if (s != S0) printf("String not accepted.\n"); }

CS 406: Lexical Analysis (S. D. Bruda) Winter 2016 9 / 21

EXAMPLES OF STATE TRANSITION DIAGRAMS

0 1 2

3

4

5

6

7

8

< =

>

oth=

>

=

oth

return 〈relop, LE〉

return 〈relop, NE〉

* return 〈relop, LT〉
return 〈relop, EQ〉

return 〈relop, GE〉

* return 〈relop, GT〉

When returning from *-ed states must re-
tract last character

digit

.

digit

E

+|−

digit

other

other

other

E

dgt

digit

digit

digit

CS 406: Lexical Analysis (S. D. Bruda) Winter 2016 10 / 21

LEX, THE LEXICAL ANALYZER GENERATOR

The LEX language is a programming language particularly suited for
working with regular expressions

Actions can also be specified as fragments of C/C++ code

The LEX compiler compiles the LEX language (e.g., scanner.l) into
C/C++ code (lex.yy.c)

The resulting code is then compiled to produce the actual lexical analyzer
The use of this lexical analyzer is through repeatedly calling the function
yylex() which will return a new token at each invocation
The attribute value (if any) is placed in the global variable yylval

Additional global variable: yytext (the lexeme)

Structure of a LEX program:
Declarations
%%

translation rules
%%

auxiliary functions

Declarations include variables,
constants, regular definitions
Transition rules have the form

Pattern { Action }
where the pattern is a regular
expression and the action is
arbitrary C/C++ code

CS 406: Lexical Analysis (S. D. Bruda) Winter 2016 11 / 21

LEX BEHAVIOUR

LEX compile the given regular expressions into one big state transition
diagram, which is then repeatedly run on the input
LEX conflict resolution rules:

Always prefer a longer to a shorter lexeme
If the longer lexeme matches more than one pattern then prefer the pattern
that comes first in the LEX program

LEX always reads one character ahead, but then retracts the lookahead
character upon returning the token

Only the lexeme itself in therefore consumed

CS 406: Lexical Analysis (S. D. Bruda) Winter 2016 12 / 21

NONDETERMINISTIC STATE TRANSITION DIAGRAMS

Deterministic = for any pair (state, input symbol) there can be at most one
outgoing transition
A nondeterministic diagram allows for the following situation:

a

q2

q3

q1

a

The acceptance condition remains unchanged:
A string c1c2c3 . . . cn is accepted by a state transition diagram if there exists
some path from the starting state to an accepting state such that the
sequence of labels along the path is c1, c2, . . . , cn

Why nondeterminism?
Simplifies the construction of the diagram

Σ

q0
q1 q2

m a n
q3

A nondeterministic diagram can be much smaller than the smallest possible
deterministic state diagram that recognizes the same language

Also known as nondeterministic finite automata (NFA)

CS 406: Lexical Analysis (S. D. Bruda) Winter 2016 13 / 21

SOFTWARE REALIZATION

As for the deterministic version, except that we have to keep track of a set
of states at any given time
typedef enum { Q0, Q1, Q2, Q3 } state;

int main (void) {

vocab t = gettoken(); StateSet A; A.include(Q0);

while (t != EOS) {

StateSet NewA;

for (state s in A) {

switch (s) {

case Q0: NewA.include(Q0);

if (t == ’m’) NewA.include(Q1); break;

case Q1: if (t == ’a’) NewA.include(Q2); break;

case Q2: if (t == ’n’) NewA.include(Q3); break;

case Q3: break;

}

}

A = NewA; t = gettoken();

}

/* accept iff (Q3 in A) */

}
CS 406: Lexical Analysis (S. D. Bruda) Winter 2016 14 / 21

SOFTWARE REALIZATION (CONT’D)

This kind of implementation is fine for “throw-away” automata
Text editor search function searches for a pattern in the text
The next search is likely to be different so a brand new automaton needs to
be created

Some times the automaton is created once and then used multiple times
The lexical structure of a programming language is well established
Lexical analysis in a compiler is accomplished by an automaton that never
changes
In such a case it is more efficient to precalculate the set of states

Exactly as in the previous program
Except that we no longer have an input to guide us, so we calculate the sets
NewA for all possible inputs
We obtain a DFA that is equivalent to the given NFA (i.e., recognizes the same
language)

CS 406: Lexical Analysis (S. D. Bruda) Winter 2016 15 / 21

ε-TRANSITIONS

Useful at times to have “spontaneous” transitions = transitions that
change the state without any input being read = ε-transitions

Only available for nondeterministic state transition diagrams!

Example of usefulness: Construct the state transition diagram for the
language

{0,1}∗01{0,1}∗ + {w ∈ {0,1}∗ : w has an even number of 1’s}

Even better ε-transitions can be eliminated afterward

CS 406: Lexical Analysis (S. D. Bruda) Winter 2016 16 / 21

ELIMINATING ε-TRANSITIONS

For every diagram M with ε-transitions a new diagram without ε-transitions
can be constructed as follows:

1 Make a copy M ′ of M where the ε-transitions have been removed.
Remove states that have only ε-transitions coming in except for the
starting state

2 Add transitions to M ′ as follows: whenever M has a chain of ε-transitions
followed by a “real” transition on x :

©q ε−→© ε−→ · · · ε−→© x−→©p
add to M ′ a transition from state q to state p labeled by x :

©q x−→©p
Note that q and p may be any states
In particular this step is also used in the case where q = p

3 If M has a chain of ε-transitions from a state r to an accepting state, then
r is made to be an accepting state of M ′.

CS 406: Lexical Analysis (S. D. Bruda) Winter 2016 17 / 21

FROM REGULAR EXPRESSIONS TO FA

Construct a finite automaton for every elementary regular expression (ε,
x ∈ Σ, ∅):

ϵ 

Then starting from component finite automata we show how we can
construct finite automata for each possible operator appearing in regular
expressions (+, ·, ∗)

Useful operation: merging two states

=+

Properties to be maintained:
One accepting state
Initial state different from the accepting state
No transitions out of the accepting state

CS 406: Lexical Analysis (S. D. Bruda) Winter 2016 18 / 21

FROM REGULAR EXPRESSIONS TO FA (CONT’D)

We start from the following two automata:

s
1

f
1

s
2

f
2

L
2

L
1

Union

s1 f1

s2 f2L2

ε

ε

ε

ε

s1 f1L1

s2 f2L2

m
e
rg

e
d m

e
rg

e
d

L

or

1

CS 406: Lexical Analysis (S. D. Bruda) Winter 2016 19 / 21

FROM REGULAR EXPRESSIONS TO FA (CONT’D)

Concatenation

1 s2 f2L2s1 f1

merge

L1s1 f1 s2 f2L2

ε

L

or

Closure

1s1 f1

s1 f1

or

merge

ε

ε

ε ε

ε

L

ε

CS 406: Lexical Analysis (S. D. Bruda) Winter 2016 20 / 21

FROM REGULAR EXPRESSIONS TO FA (CONT’D)

All regular expressions can be converted step by step to the equivalent
finite automaton by using these constructions

Construct a tree that
represents the operations
in the regular expression

Leafs are labeled with
elementary regular
expressions
Internal nodes are
labeled with operation,
and their children are
the operands

Traverse the tree from
leaves to root using the
previous constructions

Example: 1(ε + 0)∗0∗

1 FA for ε
2 FA for 0
3 FA for ε + 0
4 FA for (ε + 0)∗

5 FA for 0
6 FA for 0∗

7 FA for (ε + 0)∗0∗

8 FA for 1
9 FA for 1(ε+ 0)∗0∗

(1) ϵ 0 (2)

(3) +

(4) ∗

0 (5)

∗ (6)

· (7)

· (9)

(8) 1

The finite automaton thus obtained can either be converted into a
deterministic finite automaton or realized as is

CS 406: Lexical Analysis (S. D. Bruda) Winter 2016 21 / 21

