CONTEXT-FREE GRAMMARS

@ A context-free grammar is a tuple G = (N, X, R, S), where

e Y is an alphabet of terminals including the end-of-input token $
o N alphabet of symbols called by contrast nonterminals (or variables)

o o NN =90
CS 406 * ConteXt_ Free Grammars and TOp-DOWﬂ @ Traditionally nonterminals are capitalized or surrounded by (and), everything
ParSing else being a terminal
@ S e Nis the axiom (or the start symbol)
o RC N x (N|X)" is the set of (rewriting) rules or productions
@ Common ways of expressing (o, 8) € R: o« — fora == f3
Stefan D. Bruda @ Often terminals are quoted (which makes the (and) unnecessary)
@ Examples:
tmt) ;
- ex CONST (s '
Winter 2016 (exp) o ID = (exp) ;

if ((exp)) (stmt) else (stmt)

|:
| (exp) (op) (exp) .
| (o)) Voem) 0
op = el (seq) == =] (stmi) (seq)
o Notation: (A) ::= o4 | az is a shorthand for (A) ::= a4 and (A) = a»

CS 406: Context-Free Grammars and Top-Down Parsing (S. D. Bruda)

DERIVATIONS "B PARSE TREES

@ Definition:

@ A context-free grammar is a recipe for creating strings
@ For every a € N|X the following is a parse tree (with yield a): ®a

e G=(N,%,R,S)

N oy Sy . A
@ Arewriting rule A ::= v/ € Ris used to rewrite its left-hand side (A) into its Q Forevery A::= ¢ € Rthe following is a parse tree (with yield c): e
right-hand side (v'): @ If the following are parse trees (with yields y1, yo, ..., ¥a, respectively):
o u=v iff Ix,y e (NL)*:3AeN:u=xAy,v=xv'y,Az:=Vv €R A, A, A,
@ Rewriting can be chained (=*, the reflexive and transitive closure of = = T, T, A
derivation)

and A ::= A1Ax ... A, € R, then the following is a parse tree (w/ yield

o s="¢giffs=¢,s= ¢, orthere exist strings s1, Sz, ..., Sp such that
V1Yo ... Yn):

S=>S=>8%=-=>5=5
e (pal) = O(pal)0 = 01(pal)10 = 010(pal)010 =~ 0101010

(pal) = e|0|1]0(pal) 0|1 (pal)1

@ The language generated by grammar G: exactly all the terminal strings
generated from S: L(G) ={w e X*: S="w}

@ Yield: concatenation of leaves in inorder

CS 406: Context-Free Grammars and Top-Down Parsing (S. D. Bruda) Winter 2016 2/17 CS 406: Context-Free Grammars and Top-Down Parsing (S. D. Bruda) Winter 2016 3/17

DERIVATIONS AND PARSE TREES

REDUCED GRAMMARS

@ Every derivation starting from some nonterminal has an associated parse
tree (rooted at the starting nonterminal)

@ Two derivations are similar iff only the order of rule application varies =
can obtain one derivation from the other by repeatedly flipping
consecutive rule applications

@ Two similar derivations have identical parse trees

L R
o Can use a “standard” derivation: leftmost (A = w) or rightmost (A =" w)

The following statements are equivalent:
@ there exists a parse tree with root A and yield w
e A=*w
L
e A=*w

R
e A=*Fw

@ Ambiguity of a grammar: there exists a string that has two derivations
that are not similar (i.e., two derivations with diferent parse trees)
o Can be inherent or not

CS 406: Context-Free Grammars and Top-Down Parsing (S. D. Bruda) Winter 2016

@ Notation: |w|x = the length of string w after all the occurrences of
symbols not in the set X have been erased
@ A grammar may contain “useless” nonterminals, which do not participate
in the derivation of strings
e Unreachable nonterminal: a nonterminal A such that there does not exist a
derivation S =" w such that |w|s # 0
e Non-productive nonterminal: a nonterminal A such that A =* w implies that
lw|n # 0
@ Both unreachable and non-productive nonterminals can be found
algorithmically
e They can then be erased from the grammar (together with all the rules that
contain them) without changing the language
e We thus obtain a reduced grammar

CS 406: Context-Free Grammars and Top-Down Parsing (S. D. Bruda) Winter 2016

PARSING

@ Interface to lexical analysis:

typename vocab; /* tokens + end-of-string */
const vocab EOS; /* end-of-string pseudo-token */
vocab gettoken(void); /* returns next token */
@ Parsing = determining whether the current input belongs to the given
language
o In practice a parse tree is constructed in the process as well

@ Three types of parsers:

o General parsers: not as efficient as for finite automata
@ Several possible derivations starting from the axiom, must choose the right one
@ Careful housekeeping (dynamic programming) reduces the otherwise
exponential complexity to O(n®) - still too inefficient
o Top-down parsers: construct the parse tree from root to leaves
@ Input is scanned left to right
@ Work only with the restricted class of LL grammars
@ Parsers usually (but not always) constructed by hand
o Bottom-up parsers: construct the parse tree from leaves to root
@ Input is also scanned left to right
@ Work with the larger class of LR grammars
@ Parsers usually constructed using automated tools

CS 406: Context-Free Grammars and Top-Down Parsing (S. D. Bruda) Winter 2016

RECURSIVE DESCENT (TOP DOWN) PARSING

@ Construct a (possibly recursive) function for each nonterminal
@ Decide which function to call based on the next input token = linear
complexity

typedef enum { ID, EQ, IF, ELSE, WHILE, OPN_BRACE, CLS_BRACE,

OPN_PAREN, CLS_PAREN, SEMICOLON, EOS } vocab;
vocab gettoken() {...}
vocab t;
void MustBe (vocab ThisToken) {
if (t != ThisToken) { printf("reject"); exit(0); }
t = gettoken();
}
void Statement();
void Sequence();
int main() {
t = gettoken();
Statement () ; /*axiom*/
if (t != E0S) printf("String not accepted\n");
return O; ¥
CS 406: Context-Free Grammars and Top-Down Parsing (S. D. Bruda) Winter 2016 7/17

RECURSIVE DESCENT PARSING (CONT’D)

void Statement() {

switch(t) { (stmt)

case SEMICOLON: /* ; */
t = gettoken();
break;

case ID: /* <var> = <exp> */ (seq)

;ID = (exp) ;
if ((exp)) (stmt) else (stmt)
while ((exp)) (stmt)

{ (seq) }
e | (stmt) (seq)

t = gettoken();
MustBe (EQ) ;
Expression();
MustBe (SEMICOLON) ;
break;

case IF: /x if (<expr>) <statement> else <statement> */
t = gettoken();
MustBe (OPEN_PAREN) ;
Expression();
MustBe (CLS_PAREN) ;
Statement () ;
MustBe (ELSE) ;
Statement () ;
break;

Winter 2016

CS 406: Context-Free Grammars and Top-Down Parsing (S. D. Bruda)

PARSE TREES VS. ABSTRACT SYNTAX TREES

@ In practice the output of a parser is often a somehow simplified parse tree

called abstract syntax tree (AST)
@ Some tokens in the program being parsed have only a syntactic role (to
identify the respective language construct and its components)
o Node information can be augmented to replace them
o These tokens have no further use and so they are omitted form the AST
o Other than this omission the AST looks exactly like a parse tree
@ Examples of parse trees versus AST

Conditional (parse tree): Consitional (AST):

/N

IF ~OPN_PAREN (exp) CLS_PAREN (stmt) ELSE {stmt) (exp) (stmt) (stmt)

Assignment (parse tree): Assignment (AST):
(stmt) (assign)
{

/TN \

VAR E (exp) VAR exp)

Winter 2016 10/17

CS 406: Context-Free Grammars and Top-Down Parsing (S. D. Bruda)

RECURSIVE DESCENT PARSING (CONT’D)

case WHILE: /* while (exp) <statement> */
t = gettoken();
MustBe (OPEN_PAREN) ;
Expression();
MustBe (CLS_PAREN) ;
Statement () ;
break;

default: /* { <sequence> } */
MustBe (OPN_BRACE) ;
Sequence() ;
MustBe (CLS_BRACE) ;

} /* switch */

} /* Statement () */

void Sequence() {
if (t == CLS_BRACE) /* <empty> */ ;
else { /* <statement> <sequence> */
Statement () ;
Sequence() ;

} }

Winter 2016

CS 406: Context-Free Grammars and Top-Down Parsing (S. D. Bruda)

CONSTRUCTING THE PARSE TREE

@ The parse tree/AST can be constructed through the recursive calls:

e Each function creates a current node
e The children are populated through recursive calls
@ The current node is then returned

class Node {...};

Node* Sequence() {
Node* current = new Node(SEQ, ...);
if (t == CLS_BRACE) /* <empty> */ ;
else { /* <statement> <sequence> */
current.addChild(Statement());
current.addChild(Sequence());
}

return current;

CS 406: Context-Free Grammars and Top-Down Parsing (S. D. Bruda) Winter 2016

1/17

8y
RECURSIVE DESCENT PARSING: LEFT FACTORING ==

CONSTRUCTING THE PARSE TREE (CONT’D)

Node* Statement() {

Node* current;

switch(t) {

case SEMICOLON: /% ; */
t = gettoken();
return new Node(EMPTY);
break;

case ID: /x <var> = <exp> */
current = new Node(ASSIGN, ...);
current.addChild(ID, ...);
t = gettoken();
MustBe (EQ) ;
current.addChild (Expression());
MustBe (SEMICOLON) ;
break;

case IF: /* if (<expr>) <statement> else <statement> */
current = new Node(COND, ...);

/x .. *%/

}

return current;

CS 406: Context-Free Grammars and Top-Down Parsing (S. D. Bruda)

RECURSIVE DESCENT PARSING: AMBIGUITY

@ Some programming constructs are inherently ambiguous

(stmt) == if ((exp)) (stmt)
| if ((exp)) (stmt) else (stmt)

Winter 2016

12/17

@ Solution: choose one path and stick to it (e.g., match the else-statement

with the nearest else-less if statement)

case IF:
t = gettoken();
MustBe (OPEN_PAREN) ;
Expression() ;
MustBe (CLS_PAREN) ;
Statement () ;
if (t == ELSE) {
t = gettoken();
Statement () ;

@ Not all grammars are suitable for recursive descent:

(stmt) == (empty)

| ID:= (exp)

| IF (exp) THEN (stmt) ELSE (stmt)
| WHILE (exp) DO (stmt)

| BEGIN (seq) END

(seq) == (stmt) | (stmt); (seq)

e Both rules for (seq) begin with the same nonterminal

e Impossible to decide which one to apply based only on the next token

e Fortunately concatenation is distributive over union so we can fix the
grammar (left factoring):

(stmt) (seqTail)
(empty) | ; (seq)

(seq)
(seqTail) =

CS 406: Context-Free Grammars and Top-Down Parsing (S. D. Bruda) Winter 2016

RECURSIVE DESCENT PARSING: CLOSURE, ETC.

@ Any left recursion in the grammar will cause the parser to go into an

infinite loop:
(exp) == (exp) (addop) (term) | (term)
@ Solution: eliminate left recursion using a closure
(expy == (term) (closure)
(closure) == (empty)

| (addop) (term) (closure)

13/17

a8y
]

N

o Not the same language theoretically, but differences not relevant in practice

@ This being said, some languages are simply not parseable using
recursive descent

(palindrome) =

@ No way to know when to choose the (empty) rule
@ No way to choose between the second and the fourth rule
o No way to choose between the third and the fifth rule

Winter 2016

(empty) | 0] 10 (palindrome) 0 | 1 {palindrome) 1

15/17

CS 406: Context-Free Grammars and Top-Down Parsing (S. D. Bruda)

Winter 2016

14/17

CS 406: Context-Free Grammars and Top-Down Parsing (S. D. Bruda)

RECURSIVE DESCENT PARSING: SUFFICIENT

CONDITIONS

@ FIRST(«) = set of all initial tokens in the strings derivable from «

@ FoLLOW((N)) = set of all initial tokens in nonempty strings that may follow
(N) (possibly including E0S)
@ Sufficient conditions for a grammar to allow recursive descent parsing:
o For (N) == a1 |az| ... | aymusthave FIRST(o;) N FIRST(oyj) = 0,
1<i<j<n
@ Whenever (N) =" ¢ must have FOLLOW((N)) N FIRST((N)) =0
@ Grammars that do not have these properties may be fixable using left
factoring, closure, etc.

@ Method for constructing the recursive descent function N() for the
nonterminal (N) with rules (N) == a1 | a2 | ... | ap:
@ For a; # ¢ apply the rewriting rule (N) ::= «; whenever the next token in the
input is in FIRST(a)
@ For a; = ¢ apply the rewriting rule (N) ::= «; (thatis, (N) ::= &) whenever
the next token in the input is in FoLLOW((N))
@ Signal a syntax error in all the other cases

CS 406: Context-Free Grammars and Top-Down Parsing (S. D. Bruda)

Winter 2016 16/17

ALGORITHMS FOR COMPUTING FIRST AND FoLLOW o
b

SETS

function FIRST(« € (X U N)*) returns 2%:
foreach A € N do
| VisitedFirst[A] < False

| return AUXFIRST(c)

if « = ¢ then return 0
X < HEAD(«)
B+ TAIL(c)
if x € X then return {x}
ans +
if not VisitedFirst[x] then
VisitedFirst[x] «+ True
L foreach rule x ::= rdo
| ans < ans U AUXFIRST(r)

if x =* ¢ then ans «+ ans U AUXFIRST(3)
L return ans

CS 406: Context-Free Grammars and Top-Down Parsing (S. D. Bruda)

function AUXFIRST(a € (X U N)*) returns 2%:

function FOLLOW(A € N) returns 2*:
foreach B € N do
| VisitedFollow[B] < False

| return AUXFOLLOW(A)

function AUXFOLLOW(A € N) returns 2>:
ans + 0
if not VisitedFollow[A] then
VisitedFollow[A] + True
foreach rule X ::= uAw do
| ans <« ans U FIRST(w)

if w =* ¢ then
| ans < ans U AUXFoLLOW(X)

L return ans

Winter 2016 17/17

