SYNTAX DIRECTED TRANSLATION

@ Syntax-directed translation — the source language translation is
completely driven by the parser

e The parsing process and parse trees/AST used to direct semantic analysis
CS 406: Syntax Directed Translation and the translation of the source program
o Separate phase of a compiler or grammar augmented with information to
control the semantic analysis and translation (attribute grammars)

@ Attribute grammars — associate attributes with each grammar symbol

@ An attribute has a name and an associated value: string, number, type,
memory location, register — whatever information we need.
e Examples
Winter 2015 @ Attributes for a variable include type (as declared, useful later in type-checking)
@ An integer constant will have an attribute value (used later to generate code)

@ With each grammar rule we also give semantic rules or actions,
describing how to compute the attribute values associated with each
grammar symbol in the rule

o An attribute value for a parse node may depend on information from its
children nodes, its siblings, and its parent

Stefan D. Bruda

CS 406: Syntax Directed Translation (S. D. Bruda) Winter 2015

ATTRIBUTE GRAMMARS AND ACTIONS ATTRIBUTES

@ Synthesized attributes: the left hand-side attribute is computed from the
right hand-side attributes

Grammar Action(s) (int)
X e Y]Yz...Yn value=4 x10+2=42
(int) == (digit) {(int)o.value = (digit).value; } Xa = f(Y1.a Yea,...,Y,a) . 7 N .
| (int)(digit) {(int)o.value = (int);.value x 10 + (digit).value; } vabw—a v,
(digit) == 0 {(d?g?t).value =0;} e The lexical analyzer supplies the attributes of | |
| 1 {(digit).value = 1; } terminals diai 5
2 {{digit).value = 2;} . . . tdigt)
| ' o The attributes for nonterminals are built up for the value=4
e o nonterminals and passed up the tree |
| 9 {(digit).value = 9; } 4
@ Inherited attributes: the right hand-side attributes are derived from the left
@ Attributes are computed during the construction of the parse tree and are hand-side attributes or other right hand-side attributes
typically included in the node objects of that tree X = YiYs...Y,
@ Two general classes of attributes: Yea = f(Xa VYiaVYea,... Yi1.a Yesir.a,...,Yna)
o Synthesized: passed up in the parse tree
o Inherited: passed down the parse tree e Used for passing information about the context to nodes further down the

tree

CS 406: Syntax Directed Translation (S. D. Bruda) Winter 2015 2/14 CS 406: Syntax Directed Translation (S. D. Bruda) Winter 2015 3/14

ATTRIBUTES (CONT'D) <M ATTRIBUTES (CONT'D)

(D)(S) {(S).dl = (D).dI; }

var (V) ; (D) {(D)o.dl = addList((V).name, (D)1.dl); }

€ {(D)o.dl = NULL; }

(V) :=(E); (S) {check((V).name, (S)o.dl); (S)1.dl = (S)o.dl;}

@)
—— =i

. I @ Most programming languages require both synthesized and inherited
V) X {(V).name ="x";} attributes
y {{V).name="y";} @ A given style of parsing favors attribute flow in one direction
z {(V).name ="2";} o Top-down parsing deals trivially with inherited attributes
o Bottom-up parsing deals trivially with synthesized attributes
@ Two attributes: name for the name of the variable and df for the list of e The other direction is handled using other techniques
declarations o For example, a symbol table is often used to pass attributed back and forth
@ Each time a new variable is declared a synthesized attribute for its name irrespective of the direction favored by any particular parsing method

is attached to it

@ That name is added to a list of variables declared so far in the
synthesized attribute df created from the declaration block

@ The list of variables is then passed as an inherited attribute to the
statements following the declarations so that it can be checked that
variables are declared before use

CS 406: Syntax Directed Translation (S. D. Bruda) Winter 2015 4/14 CS 406: Syntax Directed Translation (S. D. Bruda) Winter 2015 5/14

ATTRIBUTE IMPLEMENTATION BOTTOM-UP SYNTAX DIRECTED TRANSLATION

@ Typically handling of attributes: associate with each symbol either
member variables in the AST node structure or some sort of structure
(e.g., list) with all the necessary attributes

o If we have a list then we store it as a member variable in each node structure @ Consider a LR parser ready to reduce using (A) == Xj... X,
@ Associate code to the processing of each nonterminal to carry on the @ The synbols X; are on the stack before the reduction

attribute computations @ Previous reductions have associated semantic values (attributes) to
@ Also need some convention for referring to individual symbols in a rule these symbols
while defining the associated action , @ They are then popped and (A) is pushed in their place
o Typical convention in compiler generators: $$ to refer to the left hand side . , .
and $i to refer to the i-th component of the right hand side: o WiluledV\;e d&;ms, we execute some code that compute the attribute
valued for

P -> DS { $$.1ist = $1.1list; }
D ->var V; D { $$.list = add_to_list($2.name, $4.list); } @ In effect we have a syntactic stack (for the actual parsing) and a semantic
| { $$.1ist = NULL; } stack (for the semantic values)
S >V :=E; S { check($l.name, $$.1ist); $5.1list = $$.1ist; }
|
VvV ->x { $$.name = "x"; }
|y { $$.name = "y"; }
| z { $$.name = "z"; }

CS 406: Syntax Directed Translation (S. D. Bruda) Winter 2015 6/14 CS 406: Syntax Directed Translation (S. D. Bruda) Winter 2015 7/14

ISSUES IN BOTTOM-UP SYNTAX DIRECTED 7 FIRST SOLUTION: RULE CLONING

TRANSLATION

@ Since our problem is caused by using the same rules for two different
things, we can clone those rules so that we have separate copies for

(digi) = 0]1]... 19 separate purposes
(int)y == (digit) | (int)(digit) L
(num) == o (int) | {int) @ When to use one set of rules and when to use the other is given based
h on the context of the nonterminal (i.e., where is the nonterminal used)
@ We require that the o-prefixed numbers be evaluated in octal (digity = 0[1]...|9
@ Drawback: no restriction to octal digits for octal numbers (int)y == (digit) | (int)(digit)
@ Major drawback: not enough information from below for the differentiation (intOct) == (digit) | (intOct) (digit)
between decimal and octal numbers (num) == o (intOct) | (int)
@ Semantic rules for computing these are different, yet they should all get .)
attached to the rules for (int) @ Drawback: Grammar inflation
o The decision on whether to process a decimal or octal number happens o The added rules are not meaningful syntactically
when o is shifted on the stack @ Extreme care should be taken when modifying a grammar to make sure
o At that time however an (int) has already been reduced and so its semantic that the new version still generates the same language

actions have already been applied

o ; . . , e The problem of context-free grammar equivalence is undecidable
o In addition, semantic rules can only be applied to reductions, not shifts

CS 406: Syntax Directed Translation (S. D. Bruda) Winter 2015 8/14 CS 406: Syntax Directed Translation (S. D. Bruda) Winter 2015 9/14

P)
SECOND SOLUTION: FORCING SEMANTIC ACTIONS + THIRD SOLUTION: GRAMMAR RESTRUCTURING

@ Suppose we need a semantic action when shifting some token x @ Global variables are undesirable because rules may be recursive and this
e We can insert a new rule (A) == x, and attach the action to this rule may have unexpected consequences on these variables
o All the occurrences of x in the original grammar will be replaced by (A) o Global variables can also make the semantic actions difficult to write and

@ Suppose we need a semantic action between two symbols x and y maintain since there is a lack of separation between actions
o We then insert a new rule (A) ::= = and attach the action to it o Proper initialization and resetting may be problematic

o All the occurrences of x y in the original grammar will be replaced by x (A) y @ A more robust solution is to restructure the parse tree as to eliminate the
need for global variables:

(num) == (oct) (int) {ans = (int).value; } L .
| (dec) (int) {ans = (int).value;} Qo Skchh a parse tree that allgws bottom-up synthesis without global variables
(oct) = o {base = 8;} Q Re\{|se the grammar to a}chlgve that parse tree
(dec) == ¢ {base = 10; } Q Ver!fy that the grammar |slst|II suitable for parsing (LALR(1), etc.)
(nt) == (digit) {(int)o.value = (digit).value; } @ Verify that the grammar still generate the same language
| (int)(digit) {(int)o.value = (int);.value x base + (digit).value; } (inty == (inty(digit) {(int)o.value = (int);.value x (int);.base + (digit).value;
(digity == 0 {(digit).value = 0; } (int)o.base = (int)s.base; }
e | (base) {(int)o.base = (base).base; (int)o.value = 0;}
| 9 {(digit).value = 9; } (base) == ¢ {(base).base = 10; }
| o {(base).base = 8; }
@ Note the use of the global variable base (common occurrence) (digity == 0 {(digit).value = 0; }

@ The same caveats about modifying the grammar (semantic-only rules,
equivalence) apply

©

{(digit).value = 9; }

CS 406: Syntax Directed Translation (S. D. Bruda) Winter 2015 10/14 CS 406: Syntax Directed Translation (S. D. Bruda) Winter 2015 11/14

ToP-DOWN SYNTAX DIRECTED TRANSLATION

@ Top-down parsers are usually recursive descent parsers
@ The computation of attributes is naturally inserted in the code, just like
the code for constructing the AST

@ Same ideas as above may be required to modify the grammar so that all the
attributes can be computed

class Node {...};

Node* Sequence() {
Node* current = new Node(SER, ...);
if (t == CLS_BRACE) /* <empty> */ ;
else { /* <statement> <sequence> */
current.addChild(Statement ()) ;
current.addChild(Sequence());

}

return current;

}

@ Also see the example in the textbook

CS 406: Syntax Directed Translation (S. D. Bruda) Winter 2015 12/14

AST DESIGN PRINCIPLES

@ AST design is crucial for the next phases of the compilation process
@ It should be possible to reconstitute (“unparse”) the program from an AST

@ An AST node must hold enough information to recall the program fragment
that generated it

@ Subsequent phases of the compilation process must access the AST
through suitable interfaces
o Different phases have different requirements (and so will use different
interfaces)
o Several phases will modify AST nodes
e ltis crucial to provide proper encapsulation to ensure that the AST
information is not altered inadvertently

@ Subsequent compilation phases will traverse the AST (possibly
repeatedly)

o The easiest way to accomplish this is through polymorphic and recursive
functions defined within the class hierarchy of AST node

@ The functions must be virtual to ensure the proper application for each node type
@ Most useful pattern for such functions: visitors — traverse the whole tree
recursively

CS 406: Syntax Directed Translation (S. D. Bruda) Winter 2015 14 /14

ABSTRACT SYNTAX TREES

@ The most common semantic actions are the ones that construct the

abstract syntax tree for the input program

e AST is a simplified and more compact representation of the parse tree
e Just like in a parse tree, an AST node can have an arbitrary number of

children

o Links to the parent often needed (depending on the algorithms used in the

semantic analysis)

@ The data structure for an AST node can be approached in two ways

@ Have individual types for individual nodes (assignment, conditional, loop,

etc.) — see assignments

@ Handy for languages that provide type definitions with inheritance, case in which

this is the preferred method
@ Awkward in languages that do not offer inheritance constructs

© Have the same data structure for all nodes
@ General, language-independent solution

@ Needs efficient representation for nodes with arbitrary number of children

@ Typical implementation: left-child-right-sibling
Each node is a node in a binary tree
The “left child” of a node points to the first child of that node

The “right child” of a node points to the next (right) sibling of that node

CS 406: Syntax Directed Translation (S. D. Bruda)

Winter 2015

13/14

