SYNTAX DIRECTED TRANSLATION

@ Syntax-directed translation — the source language translation is
completely driven by the parser

e The parsing process and parse trees/AST used to direct semantic analysis
CS 406: Syntax Directed Translation and the translation of the source program
o Separate phase of a compiler or grammar augmented with information to
control the semantic analysis and translation (attribute grammars)

@ Attribute grammars — associate attributes with each grammar symbol

@ An attribute has a name and an associated value: string, number, type,
memory location, register — whatever information we need.
e Examples
Winter 2015 @ Attributes for a variable include type (as declared, useful later in type-checking)
@ An integer constant will have an attribute value (used later to generate code)

@ With each grammar rule we also give semantic rules or actions,
describing how to compute the attribute values associated with each
grammar symbol in the rule

o An attribute value for a parse node may depend on information from its
children nodes, its siblings, and its parent
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ATTRIBUTE GRAMMARS AND ACTIONS ATTRIBUTES

@ Synthesized attributes: the left hand-side attribute is computed from the
right hand-side attributes

Grammar Action(s) (int)
X e Y]Yz...Yn value=4 x10+2=42
(int) == (digit) {(int)o.value = (digit).value; } Xa = f(Y1.a Yea,...,Y,a) . 7 N .
| (int)(digit) {(int)o.value = (int);.value x 10 + (digit).value; } vabw—a v,
(digit) == 0 {(d?g?t).value =0;} e The lexical analyzer supplies the attributes of | |
| 1 {(digit).value = 1; } terminals diai 5
2 {{digit).value = 2;} . . . tdigt)
| ' o The attributes for nonterminals are built up for the  value=4
e o nonterminals and passed up the tree |
| 9 {(digit).value = 9; } 4
@ Inherited attributes: the right hand-side attributes are derived from the left
@ Attributes are computed during the construction of the parse tree and are hand-side attributes or other right hand-side attributes
typically included in the node objects of that tree X = YiYs...Y,
@ Two general classes of attributes: Yea = f(Xa VYiaVYea,... Yi1.a Yesir.a,...,Yna)
o Synthesized: passed up in the parse tree
o Inherited: passed down the parse tree e Used for passing information about the context to nodes further down the

tree
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ATTRIBUTES (CONT'D) <M ATTRIBUTES (CONT'D)

(D)(S) {(S).dl = (D).dI; }

var (V) ; (D) {(D)o.dl = addList((V).name, (D)1.dl); }

€ {(D)o.dl = NULL; }

(V) :=(E); (S) {check((V).name, (S)o.dl); (S)1.dl = (S)o.dl;}

@)
—— =i

. I @ Most programming languages require both synthesized and inherited
V) X {(V).name ="x";} attributes
y {{V).name="y";} @ A given style of parsing favors attribute flow in one direction
z {(V).name ="2";} o Top-down parsing deals trivially with inherited attributes
o Bottom-up parsing deals trivially with synthesized attributes
@ Two attributes: name for the name of the variable and df for the list of e The other direction is handled using other techniques
declarations o For example, a symbol table is often used to pass attributed back and forth
@ Each time a new variable is declared a synthesized attribute for its name irrespective of the direction favored by any particular parsing method

is attached to it

@ That name is added to a list of variables declared so far in the
synthesized attribute df created from the declaration block

@ The list of variables is then passed as an inherited attribute to the
statements following the declarations so that it can be checked that
variables are declared before use
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ATTRIBUTE IMPLEMENTATION BOTTOM-UP SYNTAX DIRECTED TRANSLATION

@ Typically handling of attributes: associate with each symbol either
member variables in the AST node structure or some sort of structure
(e.g., list) with all the necessary attributes

o If we have a list then we store it as a member variable in each node structure @ Consider a LR parser ready to reduce using (A) == Xj... X,
@ Associate code to the processing of each nonterminal to carry on the @ The synbols X; are on the stack before the reduction

attribute computations @ Previous reductions have associated semantic values (attributes) to
@ Also need some convention for referring to individual symbols in a rule these symbols
while defining the associated action , @ They are then popped and (A) is pushed in their place
o Typical convention in compiler generators: $$ to refer to the left hand side . , .
and $i to refer to the i-th component of the right hand side: o WiluledV\;e d&;ms, we execute some code that compute the attribute
valued for

P -> DS { $$.1ist = $1.1list; }
D ->var V; D { $$.list = add_to_list($2.name, $4.list); } @ In effect we have a syntactic stack (for the actual parsing) and a semantic
| { $$.1ist = NULL; } stack (for the semantic values)
S >V :=E; S { check($l.name, $$.1ist); $5.1list = $$.1ist; }
|
VvV ->x { $$.name = "x"; }
|y { $$.name = "y"; }
| z { $$.name = "z"; }
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ISSUES IN BOTTOM-UP SYNTAX DIRECTED 7 FIRST SOLUTION: RULE CLONING

TRANSLATION

@ Since our problem is caused by using the same rules for two different
things, we can clone those rules so that we have separate copies for

(digi) = 0]1]... 19 separate purposes
(int)y == (digit) | (int)(digit) L
(num) == o (int) | {int) @ When to use one set of rules and when to use the other is given based
h on the context of the nonterminal (i.e., where is the nonterminal used)
@ We require that the o-prefixed numbers be evaluated in octal (digity = 0[1]...|9
@ Drawback: no restriction to octal digits for octal numbers (int)y == (digit) | (int)(digit)
@ Major drawback: not enough information from below for the differentiation (intOct) == (digit) | (intOct) (digit)
between decimal and octal numbers (num) == o (intOct) | (int)
@ Semantic rules for computing these are different, yet they should all get . )
attached to the rules for (int) @ Drawback: Grammar inflation
o The decision on whether to process a decimal or octal number happens o The added rules are not meaningful syntactically
when o is shifted on the stack @ Extreme care should be taken when modifying a grammar to make sure
o At that time however an (int) has already been reduced and so its semantic that the new version still generates the same language

actions have already been applied

o ; . . , e The problem of context-free grammar equivalence is undecidable
o In addition, semantic rules can only be applied to reductions, not shifts
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SECOND SOLUTION: FORCING SEMANTIC ACTIONS + THIRD SOLUTION: GRAMMAR RESTRUCTURING

@ Suppose we need a semantic action when shifting some token x @ Global variables are undesirable because rules may be recursive and this
e We can insert a new rule (A) == x, and attach the action to this rule may have unexpected consequences on these variables
o All the occurrences of x in the original grammar will be replaced by (A) o Global variables can also make the semantic actions difficult to write and

@ Suppose we need a semantic action between two symbols x and y maintain since there is a lack of separation between actions
o We then insert a new rule (A) ::= = and attach the action to it o Proper initialization and resetting may be problematic

o All the occurrences of x y in the original grammar will be replaced by x (A) y @ A more robust solution is to restructure the parse tree as to eliminate the
need for global variables:

(num) == (oct) (int) {ans = (int).value; } L .
| (dec) (int) {ans = (int).value;} Qo Skchh a parse tree that allgws bottom-up synthesis without global variables
(oct) = o {base = 8;} Q Re\{|se the grammar to a}chlgve that parse tree
(dec) == ¢ {base = 10; } Q Ver!fy that the grammar |slst|II suitable for parsing (LALR(1), etc.)
(nt) == (digit) {(int)o.value = (digit).value; } @ Verify that the grammar still generate the same language
| (int)(digit) {(int)o.value = (int);.value x base + (digit).value; } (inty == (inty(digit) {(int)o.value = (int);.value x (int);.base + (digit).value;
(digity == 0 {(digit).value = 0; } (int)o.base = (int)s.base; }
e | (base) {(int)o.base = (base).base; (int)o.value = 0;}
| 9 {(digit).value = 9; } (base) == ¢ {(base).base = 10; }
| o {(base).base = 8; }
@ Note the use of the global variable base (common occurrence) (digity == 0 {(digit).value = 0; }

@ The same caveats about modifying the grammar (semantic-only rules,
equivalence) apply

©

{(digit).value = 9; }
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ToP-DOWN SYNTAX DIRECTED TRANSLATION

@ Top-down parsers are usually recursive descent parsers
@ The computation of attributes is naturally inserted in the code, just like
the code for constructing the AST

@ Same ideas as above may be required to modify the grammar so that all the
attributes can be computed

class Node {...};

Node* Sequence() {
Node* current = new Node(SER, ...);
if (t == CLS_BRACE) /* <empty> */ ;
else { /* <statement> <sequence> */
current.addChild(Statement ()) ;
current.addChild(Sequence());

}

return current;

}

@ Also see the example in the textbook
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AST DESIGN PRINCIPLES

@ AST design is crucial for the next phases of the compilation process
@ It should be possible to reconstitute (“unparse”) the program from an AST

@ An AST node must hold enough information to recall the program fragment
that generated it

@ Subsequent phases of the compilation process must access the AST
through suitable interfaces
o Different phases have different requirements (and so will use different
interfaces)
o Several phases will modify AST nodes
e ltis crucial to provide proper encapsulation to ensure that the AST
information is not altered inadvertently

@ Subsequent compilation phases will traverse the AST (possibly
repeatedly)

o The easiest way to accomplish this is through polymorphic and recursive
functions defined within the class hierarchy of AST node

@ The functions must be virtual to ensure the proper application for each node type
@ Most useful pattern for such functions: visitors — traverse the whole tree
recursively
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ABSTRACT SYNTAX TREES

@ The most common semantic actions are the ones that construct the

abstract syntax tree for the input program

e AST is a simplified and more compact representation of the parse tree
e Just like in a parse tree, an AST node can have an arbitrary number of

children

o Links to the parent often needed (depending on the algorithms used in the

semantic analysis)

@ The data structure for an AST node can be approached in two ways

@ Have individual types for individual nodes (assignment, conditional, loop,

etc.) — see assignments

@ Handy for languages that provide type definitions with inheritance, case in which

this is the preferred method
@ Awkward in languages that do not offer inheritance constructs

© Have the same data structure for all nodes
@ General, language-independent solution

@ Needs efficient representation for nodes with arbitrary number of children

@ Typical implementation: left-child-right-sibling
Each node is a node in a binary tree
The “left child” of a node points to the first child of that node

The “right child” of a node points to the next (right) sibling of that node
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