
CS 403: Runtime Environments

Stefan D. Bruda

Winter 2015

RUNTIME SUPPORT

Earlier programming languages had only static, global variables
Throughout the history of programs many goodies have been added,
including local variables (and stack allocation), dynamic memory (and
heap allocation), objects, etc.
This is a brief survey of the runtime support for the features of modern
programming languages

CS 403: Runtime Environments (S. D. Bruda) Winter 2015 1 / 10

DATA REPRESENTATION

Simple variables are simply represented by sufficiently large memory
locations to hold them (e.g., 1 or 3 bytes for characters; 2, 4, or 8 bytes
for integers, etc.)

Consistent convention for representing values also needed (e.g., binary form
with 1’s or 2’c complement for integers, the IEEE standard for floating point
numbers, etc.)
Typically storage of simple variables mimic the capabilities of the underlying
machine (if any)

Pointers are stored as unsigned integers
One-dimensional arrays are stored as a contiguous block of elements,
with location of elements determined using pointer arithmetic
Multi-dimensional arrays can be stored using two approaches:

1 Contiguous block for all data, either in row-major (C, Pascal) or
column-major (Fortran) order

Location of elements determined using pointer arithmetic
2 Array of arrays, in which one array contains pointers to other arrays (DECAF)

Location of elements determined by dereferencing two pointers

CS 403: Runtime Environments (S. D. Bruda) Winter 2015 2 / 10

DATA REPRESENTATION (CONT’D)

Structs are laid out by allocating the fields sequentially in a contiguous
block

Padding is also required on many machines to ensure that all fields start on
an aligned boundary

Objects are stored pretty much like structs
Methods could be stored inside objects, but only when they are private and
final (Java), or not virtual (C++)
Otherwise dynamic dispatch is needed at run time to determine which
method to call
This is supported by using a hidden extra pointer within each object
referencing a shared, class-wide list of methods (vtable)

CS 403: Runtime Environments (S. D. Bruda) Winter 2015 3 / 10



OBJECT REPRESENTATION

First OO complication: inheritance
The new fields of an object of type D which inherits from B are stored at the
end (after B’s fields)
This way a reference of type B can also be used to point to objects of type D

Second OO complication: a method must know which object it belongs to
Pass the pointer this as an implicit first parameter

Third OO complication: dynamic dispatch = calling a function at runtime
based on the dynamic type of an object rather than its static type

A virtual function table (or vtable) is an array of pointers to method
implementations
Each vtable defined at class level, while each object holds a pointer to the
respective vtable
When we want to invoke a function we look it up in the vtable and call what
we find there
Each class defines a vtable; a derived class starts with all the pointers in the
vtable pointing to the methods in the base class, and then overwrites
pointers as new methods are defined and replace the old ones

CS 403: Runtime Environments (S. D. Bruda) Winter 2015 4 / 10

STORAGE CLASSES

A variable can be global, static, local, or dynamic
Global and static variables are usually stored in a separate segment of the
executable
Local variables are stored on a stack
Dynamic variables are stored on a heap

Manual allocation
Either manual deallocation (delete) or automatic deallocation (garbage
collection)

Typical address space of a program:
Stack
↓

↑
Heap

Global/static data
Code

CS 403: Runtime Environments (S. D. Bruda) Winter 2015 5 / 10

RUNTIME STACK

The runtime stack holds one stack frame
(or activation record) for each active
function
Each frame contains the following
information:

Frame pointer of dynamic link: pointer to
the previous stack frame (so that we can
reset the top upon function return)
Static link: holds a link to the function in
which the current function was declared

Only for languages that allow the
definition of functions inside functions

Return address
Arguments passed to the function and
local variables

A stack pointer points to the topmost
(active) stack frame
Also a valid approach to scopes

Before main calls p:

Stack pointer

global data for envex

free space

CS 403: Runtime Environments (S. D. Bruda) Winter 2015 6 / 10

RUNTIME STACK

The runtime stack holds one stack frame
(or activation record) for each active
function
Each frame contains the following
information:

Frame pointer of dynamic link: pointer to
the previous stack frame (so that we can
reset the top upon function return)
Static link: holds a link to the function in
which the current function was declared

Only for languages that allow the
definition of functions inside functions

Return address
Arguments passed to the function and
local variables

A stack pointer points to the topmost
(active) stack frame
Also a valid approach to scopes

p launches:

Stack pointer

Dynamic link

Static link

activation record for p

global data for envex

free space

CS 403: Runtime Environments (S. D. Bruda) Winter 2015 7 / 10



RUNTIME STACK

The runtime stack holds one stack frame
(or activation record) for each active
function
Each frame contains the following
information:

Frame pointer of dynamic link: pointer to
the previous stack frame (so that we can
reset the top upon function return)
Static link: holds a link to the function in
which the current function was declared

Only for languages that allow the
definition of functions inside functions

Return address
Arguments passed to the function and
local variables

A stack pointer points to the topmost
(active) stack frame
Also a valid approach to scopes

q launches:

Stack pointer

Dynamic link

Static link

activation record for q

Dynamic link

Static link

activation record for p

global data for envex

free space

CS 403: Runtime Environments (S. D. Bruda) Winter 2015 8 / 10

RUNTIME STACK

The runtime stack holds one stack frame
(or activation record) for each active
function
Each frame contains the following
information:

Frame pointer of dynamic link: pointer to
the previous stack frame (so that we can
reset the top upon function return)
Static link: holds a link to the function in
which the current function was declared

Only for languages that allow the
definition of functions inside functions

Return address
Arguments passed to the function and
local variables

A stack pointer points to the topmost
(active) stack frame
Also a valid approach to scopes

q returns:

Stack pointer

Dynamic link

Static link

activation record for q

Dynamic link

Static link

activation record for p

global data for envex

free space

CS 403: Runtime Environments (S. D. Bruda) Winter 2015 9 / 10

RUNTIME STACK

The runtime stack holds one stack frame
(or activation record) for each active
function
Each frame contains the following
information:

Frame pointer of dynamic link: pointer to
the previous stack frame (so that we can
reset the top upon function return)
Static link: holds a link to the function in
which the current function was declared

Only for languages that allow the
definition of functions inside functions

Return address
Arguments passed to the function and
local variables

A stack pointer points to the topmost
(active) stack frame
Also a valid approach to scopes

p returns:

Stack pointer

Dynamic link

Static link

activation record for q

Dynamic link

Static link

activation record for p

global data for envex

free space

CS 403: Runtime Environments (S. D. Bruda) Winter 2015 10 / 10


