CS 403: Runtime Environments

Stefan D. Bruda

Winter 2015

DATA REPRESENTATION

RUNTIME SUPPORT

@ Earlier programming languages had only static, global variables

@ Throughout the history of programs many goodies have been added,
including local variables (and stack allocation), dynamic memory (and
heap allocation), objects, etc.

@ This is a brief survey of the runtime support for the features of modern
programming languages

CS 403: Runtime Environments (S. D. Bruda) Winter 2015

DATA REPRESENTATION (CONT’D)

@ Simple variables are simply represented by sufficiently large memory
locations to hold them (e.g., 1 or 3 bytes for characters; 2, 4, or 8 bytes
for integers, etc.)

o Consistent convention for representing values also needed (e.g., binary form
with 1's or 2’c complement for integers, the IEEE standard for floating point
numbers, etc.)

o Typically storage of simple variables mimic the capabilities of the underlying
machine (if any)

@ Pointers are stored as unsigned integers

@ One-dimensional arrays are stored as a contiguous block of elements,
with location of elements determined using pointer arithmetic

@ Multi-dimensional arrays can be stored using two approaches:

@ Contiguous block for all data, either in row-major (C, Pascal) or
column-major (Fortran) order

@ Location of elements determined using pointer arithmetic
@ Array of arrays, in which one array contains pointers to other arrays (DECAF)
@ Location of elements determined by dereferencing two pointers

CS 403: Runtime Environments (S. D. Bruda) Winter 2015 2/10

@ Structs are laid out by allocating the fields sequentially in a contiguous
block

e Padding is also required on many machines to ensure that all fields start on
an aligned boundary

@ Objects are stored pretty much like structs

e Methods could be stored inside objects, but only when they are private and
final (Java), or not virtual (C++)

e Otherwise dynamic dispatch is needed at run time to determine which
method to call

e This is supported by using a hidden extra pointer within each object
referencing a shared, class-wide list of methods (vtable)

CS 403: Runtime Environments (S. D. Bruda) Winter 2015 3/10



STORAGE CLASSES

OBJECT REPRESENTATION

@ A variable can be global, static, local, or dynamic

o Global and static variables are usually stored in a separate segment of the
executable
@ Local variables are stored on a stack
e Dynamic variables are stored on a heap
@ Manual allocation
@ Either manual deallocation (delete) or automatic deallocation (garbage

@ First OO complication: inheritance

o The new fields of an object of type D which inherits from B are stored at the
end (after B's fields)
o This way a reference of type B can also be used to point to objects of type D

@ Second OO complication: a method must know which object it belongs to
o Pass the pointer this as an implicit first parameter

@ Third OO complication: dynamic dispatch = calling a function at runtime collection)
based on the dynamic type of an object rather than its static type @ Typical address space of a program:

@ A virtual function table (or vtable) is an array of pointers to method Stack
implementations !

o Each vtable defined at class level, while each object holds a pointer to the
respective vtable

o When we want to invoke a function we look it up in the vtable and call what
we find there T

o Each class defines a vtable; a derived class starts with all the pointers in the Heap
vtable pointing to the methods in the base class, and then overwrites Global/static data
pointers as new methods are defined and replace the old ones Code

CS 403: Runtime Environments (S. D. Bruda)

RUNTIME STACK

Winter 2015

4/10

CS 403: Runtime Environments (S. D. Bruda)

RUNTIME STACK

Winter 2015

5/10

, Before main calls p: ) p launches:
@ The runtime stack holds one stack frame @ The runtime stack holds one stack frame
(or activation record) for each active free space (or activation record) for each active free space
function function
@ Each frame contains the following @ Each frame contains the following
information: information:

o Frame pointer of dynamic link: pointer to
the previous stack frame (so that we can

reset the top upon function return)
e Static link: holds a link to the function in
which the current function was declared

@ Only for languages that allow the
definition of functions inside functions

o Return address
o Arguments passed to the function and
local variables

@ A stack pointer points to the topmost
(active) stack frame

@ Also a valid approach to scopes

CS 403: Runtime Environments (S. D. Bruda)

global data for envex

Stack pointer e

]

Winter 2015

6/10

e Frame pointer of dynamic link: pointer to
the previous stack frame (so that we can

reset the top upon function return)
e Static link: holds a link to the function in
which the current function was declared

@ Only for languages that allow the
definition of functions inside functions

activation record for p

Static link

@ Return address
@ Arguments passed to the function and
local variables

@ A stack pointer points to the topmost
(active) stack frame

Dynamic link

global data for envex

@ Also a valid approach to scopes

CS 403: Runtime Environments (S. D. Bruda)

Stack pointer

Winter 2015

7/10




RUNTIME STACK

@ The runtime stack holds one stack frame
(or activation record) for each active
function

@ Each frame contains the following
information:

o Frame pointer of dynamic link: pointer to
the previous stack frame (so that we can

reset the top upon function return)
e Static link: holds a link to the function in
which the current function was declared

@ Only for languages that allow the
definition of functions inside functions

@ Return address
o Arguments passed to the function and
local variables

@ A stack pointer points to the topmost
(active) stack frame

@ Also a valid approach to scopes

CS 403: Runtime Environments (S. D. Bruda)

RUNTIME STACK

@ The runtime stack holds one stack frame
(or activation record) for each active
function

@ Each frame contains the following
information:

o Frame pointer of dynamic link: pointer to
the previous stack frame (so that we can

reset the top upon function return)
e Static link: holds a link to the function in
which the current function was declared

@ Only for languages that allow the
definition of functions inside functions

@ Return address
o Arguments passed to the function and
local variables

@ A stack pointer points to the topmost
(active) stack frame

@ Also a valid approach to scopes

CS 403: Runtime Environments (S. D. Bruda)

q launches:

free space

activation record for q

Static link

Dynamic link

activation record for p

Static link

Dynamic link

global data for envex

Stack pointer

Winter 2015

p returns:

8/10

free space

activation record for q

Static link

Dynamic link

activation record for p

Static link

Dynamic link

global data for envex

Stack pointer

Winter 2015

10/10

RUNTIME STACK

@ The runtime stack holds one stack frame
(or activation record) for each active
function

@ Each frame contains the following
information:

e Frame pointer of dynamic link: pointer to
the previous stack frame (so that we can

reset the top upon function return)
o Static link: holds a link to the function in
which the current function was declared

@ Only for languages that allow the
definition of functions inside functions

e Return address
e Arguments passed to the function and
local variables
@ A stack pointer points to the topmost
(active) stack frame

@ Also a valid approach to scopes

CS 403: Runtime Environments (S. D. Bruda)

q returns:

free space

activation record for g

Static link

Dynamic link

activation record for p

Static link

Dynamic link

global data for envex

Stack pointer

Winter 2015




