CPU SCHEDULING

e Aims to assign processes to be executed by the CPU in a way that meets system
objectives such as response time, throughput, and processor efficiency

e Broken down into three separate functions:

— Long term scheduling = the decision to add to the pool of processes being exe-
cuted

— Medium term scheduling = the decision to add to the number of processes that
are partially or fully into main memory

— Short term scheduling = decides which available process will be executed by the
CPU

— 1/O scheduling = decides which process’ pending |/O request is handled by the
available 1/O devices
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CPU SCHEDULING (CONT'D)
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CPU SCHEDULING (CONT'D)
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NESTED SCHEDULING FUNCTIONS
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QUEUING DIAGRAM

Time-out

Long-term
scheduling
Batch . Ready Queue 23}?:34:':“ Release
. I uli —
m» v 5 Processor
A
Medium-term
! scheduling
Interactive v Ready, Suspend Queue
users -y,
- -
Medium-term
scheduling
Blocked, Suspend Queue ,"
-7
L Blocked Queue
Event - Event Wait
Occurs

SCHEDULING/4

CS 409, FALL 2013



SHORT-TERM PRIORITY SCHEDULING
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LONG- AND MEDIUM-TERM SCHEDULER

e Long-term scheduler controls the degree of multiprogramming
— May need to limit this degree to provide satisfactory service to the current set of
processes

— Must decide when the operating system can take on one or more additional
processes

— Must decide which jobs to accept and turn into processes

x First come, first served
x Priority
x Execution times, 1/O requirements, etc.

e Medium-term scheduler is part of the swapping function

— Swapping-in decisions also based on the need to manage the degree of multi-
programming

— Also considers the memory requirements of the swapped-out processes
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SHORT-TERM SCHEDULING (DISPATCHER)

e Executes most frequently, makes fine-grained decisions of which process to execute
next

e Invoked for every occurrence of an event that may lead to the blocking of the current
process

E.g, clock interrupt, I/O interrupt, OS call, signal, semaphore

e Attempts to optimize certain aspect of the system behaviour = needs a set of criteria
to evaluate its policy

User-oriented criteria (such as response time) relates the behaviour of the sys-
tem as perceived by the user

System-oriented criteria focus on efficient utilization of the CPU (or the rate at
which processes are completed)

Performance-related criteria (e.g., response time): quantitative, easy to measure

Non-performance-related criteria (e.g., predictability): qualitative, not os easy to
measure
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SCHEDULING CRITERIA

e User Oriented, Performance Related

— Turnaround time: execution + waiting time between the submission of a process and its comple-
tion; appropriate for batch jobs

— Response time: time from the submission of a request until the response begins to be received
(particularly meaningful for interactive jobs)

— Deadlines: when deadlines exist (real time) they take precedence
e User Oriented, Other

— Predictability: a job should run in about the same amount of time and at about the same cost
regardless of the load (minimize surprise)

e System Oriented, Performance Related

— Throughput: maximize the number of processes completed per unit of time

— Processor utilization: the percentage of time that the processor is busy (efficiency measure,
significant for expensive, shared systems)

e System Oriented, Other

— Fairness: processes should be treated the same; no one should suffer starvation
— Priority enforcement: favor higher-priority processes if applicable

— Balancing resources: keep the resources of the system busy, favour processes that will under-
utilize stressed resources (also long- and medium-term scheduling criterion)
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CHARACTERISTICS OF SCHEDULING ALGORITHMS

e Selection Function determines which ready process is selected next for execution

— May be based on priority, resource requirements, or the execution characteristics
— Significant characteristics:

w = time spent in system so far, waiting
e = time spent in execution so far
s = total service time required by the process (supplied or estimated)

e Decision mode determines when is the selection function exercised

— Non-preemptive — process continues to be in the running state until it terminates
or blocks itself on I/O

— Preemptive — processes may be moved from Running to Ready by the OS
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FIRST-COME-FIRST-SERVED (FCFS)

Process Arrival time Service time

moOm>
oo hNO
Dok oW

e Strict queuing scheme, simplest policy
e Performs better for long processes
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RouND ROBIN (RR)

e Preemption based on a clock, also known as time slicing

e Effective in general-purpose, time-sharing systems; favours CPU-bound processes
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e Main design choice: the size of the time slice (or time quantum) — affects response time as well as
total service time
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VIRTUAL RounD RoBIN (VRR)
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SHORTEST PROCESS NEXT (SPN)

e Non-preemptive, selects the process with the shortest expecting processing time
e Short processes jump the queue, longer processes may starve

I

Shortest Process
Next (SPN)

[ ]

e Main difficulty: obtain an (estimate of) the running time

=O AW

— If estimate way off (shorter) the system may abort the job
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SHORTEST REMAINING TIME (SRT)

e Preemptive variant of SPN

e Scheduler always chooses the process that has the shortest expected remaining

processing time

Shortest Remaining
Time (SRT)

e Increased risk of starvation for longer processes

mO A=

e But turnaround performance superior to SPN since a short job is given immediate

preference
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HIGHEST RESPONSE RATIO NEXT (HRRN)

e Chooses next process with the greatest ratio

Ratio =

Highest Response
Ratio Next (HRRN)

e Attractive because it accounts for the age of the process
e Shorter processes are favoured, but longer processes have a chance

— The longer a process waits, the greater its ratio

HES AR

time spent waiting 4 expected service time

expected service time
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FEEDBACK SCHEDULING
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FEEDBACK PERFORMANCE SCHEDULING

e Good when no estimate running time is available — will penalize jobs that have been

running the longest instead
e Preemptive, dynamic priority

e Each time a process is preempted, it is also demoted to a lower-level queue

e Time quanta may be different in different queues
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COMPARISON OF SCHEDULING ALGORITHMS
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COMPARISON OF SCHEDULING ALGORITHMS (CONT’D)
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TRADITIONAL UNIX SCHEDULING

e Used in both SV R3 and 4.3 BSD UNIX - time-sharing, interactive systems

e Provides good response time for interactive users while ensuring that low-priority
background jobs do not starve

e Uses multilevel feedback using round robin within each of the priority queues
e Makes use of one-second preemption
e Priority is based on process type and execution history

CPU;(v—1
CPU(i) = g )
PU; (2
Pi(i) = Basej—l—CTj(z)—l—nicej

— CPU,(3) = processor utilization by process j through interval

— P;(¢) = priority of process j at the beginning of interval ¢ (lower is higher)
— Base; = base priority of process j

— nice; = user-defined adjustment factor
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MULTIPROCESSOR SCHEDULING

e Granularity of synchronization:

— Independent — multiple, unrelated processes; typical for time-sharing systems
x Multiprocessor systems will do the same thing, only faster

— Coarse (200—1M instructions) — concurrent processes in a multiprogramming
environment

+ No significant change for multiprocessor systems
— Medium (20—200 instructions) — parallel processing in a single application

« Explicit parallelism (multiple threads)
x Frequent interaction affects scheduling considerably

— Fine (< 20 instructions) — parallelism inherent in a single instruction stream;
complex interaction

x NO good, general solution

e Design issues: dispatching, use of multiprogramming on every individual processor,
assignment of processes to processor
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ASSIGNING PROCESSES TO PROCESSORS

e Treat processors as a pool of resources and assign on demand
— Assumes symmetric multiprocessing (SMP)
e Assign processes to specific processors — group or gang scheduling

— Less overhead in the scheduling function
— Different processors can have different utilizations

e Both these methods need some way to decide which process goes on which pro-
cessor

— Master/slave: kernel always run on a particular (master) processor

x Master responsible for scheduling, slaves send requests to the master
« Conflict resolution is simplified (one processor controls everything)
x But the master can become a bottleneck

— Peer: kernel can run on any processor

x Each processor self-schedules from a pool of available processes
x Complicates the OS design
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LOAD SHARING SCHEDULING

e No particular assignment to any processor; load distributed evenly across proces-
sors

e No centralized scheduler, single queue system — can be organized as seen earlier
(FCFS, RR, etc.)

e Disadvantages:

— Central queue system must be accessed under mutual exclusion (bottleneck)

— Preempted threads are unlikely to execute on the same processor, so caching is
less efficient

— All threads treated the same, so context switching is most of the time between
processes (expensive)
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GANG SCHEDULING

e Simultaneous scheduling of threads that make up a single process

— Cheaper context switching
— Less scheduling overhead

e Particularly useful for medium- to fine-grained parallel applications (performance de-
grades when part of the application is blocked while other parts run)
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DEDICATED PROCESSOR ASSIGNMENT

e Each thread of an application is assigned to one processor and will remain so until
the end of the program

e But if a thread is blocked, then that processor is idle (decreased utilization)

— However, in a highly parallel system with tens or hundreds of processors, pro-
cessor utilization is no longer so important as a metric for effectiveness or per-
formance

— The total avoidance of process switching during the lifetime of a program should
result in a substantial speedup of that program
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DYNAMIC SCHEDULING

e Provide language and system tools that permit the number of threads in the process
to be altered dynamically

— This allows the operating system to adjust the load to improve utilization
e Both the operating system and the application are involved in making scheduling
decisions

e The scheduling responsibility of the operating system is primarily limited to processor
allocation

e This approach is superior to gang scheduling or dedicated processor assignment for
applications that can take advantage of it
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POSIX THREAD SCHEDULING

e Process-contention scope (PCS) with scheduling competition within the process

e System-contention scope (SCS) with scheduling competition among all threads in
system

e Pthreads API allows specifying either PCS or SCS during thread creation

PTHREAD_SCOPE_PROCESS schedules threads using PCS scheduling
PTHREAD_SCOPE_SYSTEM schedules threads using SCS scheduling

int 1i; pthread t tid[NUM_THREADS]; pthread attr t attr;

pthread attr init (&attr); /* get the default attributes =/

/* set the scheduling algorithm to PROCESS or SYSTEM =/

pthread attr setscope(&attr, PTHREAD_SCOPE_SYSTEM) ;

/* set the scheduling policy - FIFO, RT, or OTHER x/

pthread attr setschedpolicy(&attr, SCHED_OTHER) ;

for (i = 0; i1 < NUM THREADS; i++) /% create the threads =/
pthread create(&tid[i], &attr, runner,NULL) ;

for (i = 0; i < NUM THREADS; i++) /% join on each thread =/
pthread join(tid[i], NULL);
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REAL-TIME SYSTEMS

e Real time system: The correctness of the system depends not only on the logical
result of the computations but also on the time at which those results are produced

— Most often time constraints are stated as deadlines

— Tasks or processes attempt to control or react to events that take place in the
outside world

— These events occur in real time and tasks must be able to keep up with them
— The scheduler is the most important component of these systems

e Hard real time: Timing violations will cause unacceptable damage or a fatal error to
the system

e Soft real time: Deadlines are desirable but not mandatory, so that it makes sense to
schedule and execute a job even if its deadline has passed

e Further characteristics: determinism, responsiveness, reliability, fail-soft operation
e Real-time tasks can be

— Periodic, with requirements stated as “once per period T or “every T’ time units
— Aperiodic, which may have constraints on both start and end times
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REAL-TIME SCHEDULING
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CLASSES OF REAL-TIME SCHEDULING

e Static table-driven approaches

— Performs a static analysis of feasible schedules of dispatching
— Result is a schedule that determines at run time when a task must start

e Static priority-driven preemptive approaches

— A static analysis is performed but no schedule is drawn up

— Analysis is used to assign priorities to tasks so that a traditional priority-driven
preemptive scheduler can be used

e Dynamic planning-based approaches

— Feasibility is determined at run time rather than offline

— One result of the analysis is a schedule or plan that is used to decide when to
dispatch the task at hand

e Dynamic best effort approaches

— No feasibility analysis is performed
— System tries to meet deadlines, aborts any started process with missed deadline
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DEADLINE SCHEDULING

e Real-time operating systems will start real-time tasks as rapidly as possible and
emphasize rapid interrupt handling and task dispatching

e Real-time applications are generally not concerned with sheer speed but rather with
completing (or starting) tasks at the most valuable times

e Priorities provide a crude tool and do not capture the requirement of completion (or
initiation) at the most valuable time

e Information used for deadline scheduling:

— Ready time — Starting deadline — Completion deadline
— Processing time — Resource requirements — Priority
— Subtask scheduler (task may be split into a mandatory and an optional subtask)
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PERIODIC REAL-TIME SCHEDULING WITH COMPLETION DEADLINES

B2
deadline

B1
deadline

~~
172]
g
o
A E
fo
g
poL - I N S
g —
=
S
-
R I
- —
IR
]
= e
=
RIS
: LERls
1 I 1
]
=}
> R
en
2 Bl .
| F-----
3
S
CRLTT
: BPH.
- —
&
© —
=l =
o Rle
—
<
. - _____

Arrival times, execution

times, and deadlines

B2

A4

A3 | B2

A2 | B1

B1

Al

Fixed-priority scheduling;

A has priority

Fixed-priority scheduling;

B has priority

[\
-4
<+
n <
<
Qe
wy I
A 3¢}
S <
=l
Qle—z
==}
o
A -
<+—<
b
==}
—-
<

Earliest deadline scheduling

using completion deadlines

SCHEDULING/32

CS 409, FALL 2013



AERIODIC REAL-TIME SCHEDULING WITH STARTING DEADLINES
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RATE-MONOTONIC SCHEDULING

Static-priority scheduling, priorities as-
signed on the basis of the cycle dura-
tion of the job: the shorter the cycle,
the higher is the job’s priority

Rate monotonic analysis used to pro-
vide scheduling guarantees for a par-
ticular application: A feasible schedule
always exists as long as the CPU uti-
lization is below a specific bound
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PRIORITY INVERSION

e Can occur in any priority-based preemptive scheduling scheme

e Particularly relevant in the context of real-time scheduling
e Occurs when circumstances within the system force a higher priority task to wait for

a lower priority task

— Unbounded Periority Inver-
sion: the duration of a
priority inversion depends
not only on the time re-
quired to handle a shared
resource, but also on the un-
predictable actions of other
unrelated tasks

blocked by T;

(attempt to lock s) s locked
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PRIORITY INHERITANCE

e Fixes the priority inversion problem

e Increase the priority of a process to the maximum priority of any pro-
cess waiting for any resource on which the process has a resource lock

blocked by T;
(attempt to lock s) s locked

— When a job blocks one or
more high priority jobs, it ig-
nores its original priority as-
signment and executes its
critical section at the highest T,
priority level of all the jobs it
blocks s locked by T, pr(:f;nTPted s unlocked

— After executing its critical N : l
section, the job returns to its
original priority level

\4

preempted

t; ty t;  ty ts te t; tg
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LINUX SCHEDULING

A | minimum
e Three classes of processes oy —
mi (J
SCHED_FIFO: FIFO, real-time threads c | middie P> B> C—>A—>
SCHED_RR: Round-robin, real-time threads . F— (b Flon i FIEO seheduling
SCHED_OTHER: Non-real-time threads
(a) Relative thread priorities
— Multiple priorities within each class D—>B—>C—>B—>C—>A—>

(c) Flow with RR scheduling

e SCHED_OTHER o0ses an O(1) scheduler

— Two priority ranges: time-sharing and real-time
— Real-time range from 0 to 99 and nice value from 100 to 139
— Different time quanta assigned for each class

— Kernel maintains two scheduling data structures for each processor in the sys-
tem
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LINUX SCHEDULING (CONT'D)

numeric relative time
priority priority quantum
0 highest 200 ms
* real-time
: tasks
99
100
: other
. tasks
140 lowest 10 ms

e Active queues: 140 queues by priority
each containing ready tasks for that pri-
ority

e Expires queues: 140 queues con-
taining ready tasks with expired time

quanta
active expired
array array
priority task lists priority task lists
[0] 0—0 [0] 0—0—0
[1] O0—0—0 [1] O
[140] ® [140] 0—o0
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