
CPU SCHEDULING

• Aims to assign processes to be executed by the CPU in a way that meets system
objectives such as response time, throughput, and processor efficiency

• Broken down into three separate functions:

– Long term scheduling = the decision to add to the pool of processes being exe-
cuted

– Medium term scheduling = the decision to add to the number of processes that
are partially or fully into main memory

– Short term scheduling = decides which available process will be executed by the
CPU

– I/O scheduling = decides which process’ pending I/O request is handled by the
available I/O devices

CS 409, FALL 2013 SCHEDULING/1



CPU SCHEDULING (CONT’D)

CS 409, FALL 2013 SCHEDULING/2



CPU SCHEDULING (CONT’D)

CS 409, FALL 2013 SCHEDULING/2



NESTED SCHEDULING FUNCTIONS

CS 409, FALL 2013 SCHEDULING/3



QUEUING DIAGRAM

CS 409, FALL 2013 SCHEDULING/4



SHORT-TERM PRIORITY SCHEDULING

CS 409, FALL 2013 SCHEDULING/5



LONG- AND MEDIUM-TERM SCHEDULER

• Long-term scheduler controls the degree of multiprogramming

– May need to limit this degree to provide satisfactory service to the current set of
processes

– Must decide when the operating system can take on one or more additional
processes

– Must decide which jobs to accept and turn into processes

∗ First come, first served
∗ Priority
∗ Execution times, I/O requirements, etc.

• Medium-term scheduler is part of the swapping function

– Swapping-in decisions also based on the need to manage the degree of multi-
programming

– Also considers the memory requirements of the swapped-out processes

CS 409, FALL 2013 SCHEDULING/6



SHORT-TERM SCHEDULING (DISPATCHER)

• Executes most frequently, makes fine-grained decisions of which process to execute
next

• Invoked for every occurrence of an event that may lead to the blocking of the current
process

– E.g, clock interrupt, I/O interrupt, OS call, signal, semaphore

• Attempts to optimize certain aspect of the system behaviour = needs a set of criteria
to evaluate its policy

– User-oriented criteria (such as response time) relates the behaviour of the sys-
tem as perceived by the user

– System-oriented criteria focus on efficient utilization of the CPU (or the rate at
which processes are completed)

– Performance-related criteria (e.g., response time): quantitative, easy to measure
– Non-performance-related criteria (e.g., predictability): qualitative, not os easy to

measure

CS 409, FALL 2013 SCHEDULING/7



SCHEDULING CRITERIA
• User Oriented, Performance Related

– Turnaround time: execution + waiting time between the submission of a process and its comple-
tion; appropriate for batch jobs

– Response time: time from the submission of a request until the response begins to be received
(particularly meaningful for interactive jobs)

– Deadlines: when deadlines exist (real time) they take precedence

• User Oriented, Other

– Predictability: a job should run in about the same amount of time and at about the same cost
regardless of the load (minimize surprise)

• System Oriented, Performance Related

– Throughput: maximize the number of processes completed per unit of time
– Processor utilization: the percentage of time that the processor is busy (efficiency measure,

significant for expensive, shared systems)

• System Oriented, Other

– Fairness: processes should be treated the same; no one should suffer starvation
– Priority enforcement: favor higher-priority processes if applicable
– Balancing resources: keep the resources of the system busy, favour processes that will under-

utilize stressed resources (also long- and medium-term scheduling criterion)

CS 409, FALL 2013 SCHEDULING/8



CHARACTERISTICS OF SCHEDULING ALGORITHMS

• Selection Function determines which ready process is selected next for execution

– May be based on priority, resource requirements, or the execution characteristics
– Significant characteristics:

w = time spent in system so far, waiting
e = time spent in execution so far
s = total service time required by the process (supplied or estimated)

• Decision mode determines when is the selection function exercised

– Non-preemptive – process continues to be in the running state until it terminates
or blocks itself on I/O

– Preemptive – processes may be moved from Running to Ready by the OS

CS 409, FALL 2013 SCHEDULING/9



FIRST-COME-FIRST-SERVED (FCFS)

Process Arrival time Service time
A 0 3
B 2 6
C 4 4
D 6 5
E 8 2

• Strict queuing scheme, simplest policy

• Performs better for long processes

• Favours processor-bound processes over I/O-bound ones

CS 409, FALL 2013 SCHEDULING/10



ROUND ROBIN (RR)

• Preemption based on a clock, also known as time slicing
• Effective in general-purpose, time-sharing systems; favours CPU-bound processes

• Main design choice: the size of the time slice (or time quantum) – affects response time as well as
total service time

CS 409, FALL 2013 SCHEDULING/11



VIRTUAL ROUND ROBIN (VRR)

CS 409, FALL 2013 SCHEDULING/12



SHORTEST PROCESS NEXT (SPN)

• Non-preemptive, selects the process with the shortest expecting processing time

• Short processes jump the queue, longer processes may starve

• Main difficulty: obtain an (estimate of) the running time

– If estimate way off (shorter) the system may abort the job

CS 409, FALL 2013 SCHEDULING/13



SHORTEST REMAINING TIME (SRT)

• Preemptive variant of SPN

• Scheduler always chooses the process that has the shortest expected remaining
processing time

• Increased risk of starvation for longer processes

• But turnaround performance superior to SPN since a short job is given immediate
preference

CS 409, FALL 2013 SCHEDULING/14



HIGHEST RESPONSE RATIO NEXT (HRRN)

• Chooses next process with the greatest ratio

Ratio =
time spent waiting + expected service time

expected service time

• Attractive because it accounts for the age of the process

• Shorter processes are favoured, but longer processes have a chance

– The longer a process waits, the greater its ratio

CS 409, FALL 2013 SCHEDULING/15



FEEDBACK SCHEDULING

CS 409, FALL 2013 SCHEDULING/16



FEEDBACK PERFORMANCE SCHEDULING

• Good when no estimate running time is available – will penalize jobs that have been
running the longest instead

• Preemptive, dynamic priority

• Each time a process is preempted, it is also demoted to a lower-level queue

• Time quanta may be different in different queues

CS 409, FALL 2013 SCHEDULING/17



COMPARISON OF SCHEDULING ALGORITHMS

FCFS RR SPN SRT HRRN Feedback

Selection func-
tion

max[w] constant min[s] min[s - e] max
(
w+s
s

)
Decision mode

Non-
preemptive

Preemptive
(at time
quantum)

Non-
preemptive

Preemptive
(at ar-
rival)

Non-
preemptive

Preemptive
(at time
quantum)

Throughput
Not empha-
sized

Low if
quantum
is too
small

High High High Not empha-
sized

Response time
May be
high

Good
for short
processes

Good
for short
processes

Good Good Not empha-
sized

Overhead
Minimum Minimum Can be

high
Can be
high

Can be
high

Can be
high

Effect on pro-
cesses

Penalizes
short &
I/O bound
processes

Fair treat-
ment

Penalizes
long pro-
cesses

Penalizes
long pro-
cesses

Good
balance

May favor
I/O bound
processes

Starvation
No No Possible Possible No Possible

CS 409, FALL 2013 SCHEDULING/18



COMPARISON OF SCHEDULING ALGORITHMS (CONT’D)
Process A B C D E
Arrival Time 0 2 4 6 8
Service Time (Ts) 3 6 4 5 2 Mean

FCFS Finish Time 3 9 13 18 20
Turnaround Time (Tr) 3 7 9 12 12 8.60
Tr/Ts 1.00 1.17 2.25 2.40 6.00 2.56

RR q = 1 Finish Time 4 18 17 20 15
Turnaround Time (Tr) 4 16 13 14 7 10.80
Tr/Ts 1.33 2.67 3.25 2.80 3.50 2.71

RR q = 4 Finish Time 3 17 11 20 19
Turnaround Time (Tr) 3 15 7 14 11 10.00
Tr/Ts 1.00 2.5 1.75 2.80 5.50 2.71

SPN Finish Time 3 9 15 20 11
Turnaround Time (Tr) 3 7 11 14 3 7.60
Tr/Ts 1.00 1.17 2.75 2.80 1.50 1.84

SRT Finish Time 3 15 8 20 10
Turnaround Time (Tr) 3 13 4 14 2 7.20
Tr/Ts 1.00 2.17 1.00 2.80 1.00 1.59

HRRN Finish Time 3 9 13 20 15
Turnaround Time (Tr) 3 7 9 14 7 8.00
Tr/Ts 1.00 1.17 2.25 2.80 3.5 2.14

FB q = 1 Finish Time 4 20 16 19 11
Turnaround Time (Tr) 4 18 12 13 3 10.00
Tr/Ts 1.33 3.00 3.00 2.60 1.5 2.29

FB q = 2i Finish Time 4 17 18 20 14
Turnaround Time (Tr) 4 15 14 14 6 10.60
Tr/Ts 1.33 2.50 3.50 2.80 3.00 2.63

CS 409, FALL 2013 SCHEDULING/19



TRADITIONAL UNIX SCHEDULING

• Used in both SV R3 and 4.3 BSD UNIX - time-sharing, interactive systems

• Provides good response time for interactive users while ensuring that low-priority
background jobs do not starve

• Uses multilevel feedback using round robin within each of the priority queues

• Makes use of one-second preemption

• Priority is based on process type and execution history

CPUj(i) =
CPUi(i− 1)

2

Pj(i) = Basej +
CPUj(i)

2
+ nicej

– CPUj(i) = processor utilization by process j through interval i
– Pj(i) = priority of process j at the beginning of interval i (lower is higher)
– Basej = base priority of process j

– nicej = user-defined adjustment factor

CS 409, FALL 2013 SCHEDULING/20



MULTIPROCESSOR SCHEDULING

• Granularity of synchronization:

– Independent – multiple, unrelated processes; typical for time-sharing systems

∗ Multiprocessor systems will do the same thing, only faster

– Coarse (200–1M instructions) – concurrent processes in a multiprogramming
environment

∗ No significant change for multiprocessor systems

– Medium (20–200 instructions) – parallel processing in a single application

∗ Explicit parallelism (multiple threads)
∗ Frequent interaction affects scheduling considerably

– Fine (< 20 instructions) – parallelism inherent in a single instruction stream;
complex interaction

∗ No good, general solution

• Design issues: dispatching, use of multiprogramming on every individual processor,
assignment of processes to processor

CS 409, FALL 2013 SCHEDULING/21



ASSIGNING PROCESSES TO PROCESSORS

• Treat processors as a pool of resources and assign on demand

– Assumes symmetric multiprocessing (SMP)

• Assign processes to specific processors – group or gang scheduling

– Less overhead in the scheduling function
– Different processors can have different utilizations

• Both these methods need some way to decide which process goes on which pro-
cessor

– Master/slave: kernel always run on a particular (master) processor

∗ Master responsible for scheduling, slaves send requests to the master
∗ Conflict resolution is simplified (one processor controls everything)
∗ But the master can become a bottleneck

– Peer: kernel can run on any processor

∗ Each processor self-schedules from a pool of available processes
∗ Complicates the OS design

CS 409, FALL 2013 SCHEDULING/22



LOAD SHARING SCHEDULING

• No particular assignment to any processor; load distributed evenly across proces-
sors

• No centralized scheduler, single queue system – can be organized as seen earlier
(FCFS, RR, etc.)

• Disadvantages:

– Central queue system must be accessed under mutual exclusion (bottleneck)
– Preempted threads are unlikely to execute on the same processor, so caching is

less efficient
– All threads treated the same, so context switching is most of the time between

processes (expensive)

CS 409, FALL 2013 SCHEDULING/23



GANG SCHEDULING

• Simultaneous scheduling of threads that make up a single process

– Cheaper context switching
– Less scheduling overhead

• Particularly useful for medium- to fine-grained parallel applications (performance de-
grades when part of the application is blocked while other parts run)

CS 409, FALL 2013 SCHEDULING/24



DEDICATED PROCESSOR ASSIGNMENT

• Each thread of an application is assigned to one processor and will remain so until
the end of the program

• But if a thread is blocked, then that processor is idle (decreased utilization)

– However, in a highly parallel system with tens or hundreds of processors, pro-
cessor utilization is no longer so important as a metric for effectiveness or per-
formance

– The total avoidance of process switching during the lifetime of a program should
result in a substantial speedup of that program

CS 409, FALL 2013 SCHEDULING/25



DYNAMIC SCHEDULING

• Provide language and system tools that permit the number of threads in the process
to be altered dynamically

– This allows the operating system to adjust the load to improve utilization

• Both the operating system and the application are involved in making scheduling
decisions

• The scheduling responsibility of the operating system is primarily limited to processor
allocation

• This approach is superior to gang scheduling or dedicated processor assignment for
applications that can take advantage of it

CS 409, FALL 2013 SCHEDULING/26



POSIX THREAD SCHEDULING

• Process-contention scope (PCS) with scheduling competition within the process

• System-contention scope (SCS) with scheduling competition among all threads in
system

• Pthreads API allows specifying either PCS or SCS during thread creation

PTHREAD_SCOPE_PROCESS schedules threads using PCS scheduling
PTHREAD_SCOPE_SYSTEM schedules threads using SCS scheduling

int i; pthread t tid[NUM_THREADS]; pthread attr t attr;
pthread attr init(&attr); /* get the default attributes */
/* set the scheduling algorithm to PROCESS or SYSTEM */
pthread attr setscope(&attr, PTHREAD_SCOPE_SYSTEM);
/* set the scheduling policy - FIFO, RT, or OTHER */
pthread attr setschedpolicy(&attr, SCHED_OTHER);
for (i = 0; i < NUM THREADS; i++) /* create the threads */

pthread create(&tid[i],&attr,runner,NULL);
for (i = 0; i < NUM THREADS; i++) /* join on each thread */

pthread join(tid[i], NULL);

CS 409, FALL 2013 SCHEDULING/27



REAL-TIME SYSTEMS

• Real time system: The correctness of the system depends not only on the logical
result of the computations but also on the time at which those results are produced

– Most often time constraints are stated as deadlines
– Tasks or processes attempt to control or react to events that take place in the

outside world
– These events occur in real time and tasks must be able to keep up with them
– The scheduler is the most important component of these systems

• Hard real time: Timing violations will cause unacceptable damage or a fatal error to
the system

• Soft real time: Deadlines are desirable but not mandatory, so that it makes sense to
schedule and execute a job even if its deadline has passed

• Further characteristics: determinism, responsiveness, reliability, fail-soft operation

• Real-time tasks can be

– Periodic, with requirements stated as “once per period T ” or “every T time units”
– Aperiodic, which may have constraints on both start and end times

CS 409, FALL 2013 SCHEDULING/28



REAL-TIME SCHEDULING

CS 409, FALL 2013 SCHEDULING/29



CLASSES OF REAL-TIME SCHEDULING

• Static table-driven approaches

– Performs a static analysis of feasible schedules of dispatching
– Result is a schedule that determines at run time when a task must start

• Static priority-driven preemptive approaches

– A static analysis is performed but no schedule is drawn up
– Analysis is used to assign priorities to tasks so that a traditional priority-driven

preemptive scheduler can be used

• Dynamic planning-based approaches

– Feasibility is determined at run time rather than offline
– One result of the analysis is a schedule or plan that is used to decide when to

dispatch the task at hand

• Dynamic best effort approaches

– No feasibility analysis is performed
– System tries to meet deadlines, aborts any started process with missed deadline

CS 409, FALL 2013 SCHEDULING/30



DEADLINE SCHEDULING

• Real-time operating systems will start real-time tasks as rapidly as possible and
emphasize rapid interrupt handling and task dispatching

• Real-time applications are generally not concerned with sheer speed but rather with
completing (or starting) tasks at the most valuable times

• Priorities provide a crude tool and do not capture the requirement of completion (or
initiation) at the most valuable time

• Information used for deadline scheduling:

– Ready time – Starting deadline – Completion deadline
– Processing time – Resource requirements – Priority
– Subtask scheduler (task may be split into a mandatory and an optional subtask)

CS 409, FALL 2013 SCHEDULING/31



PERIODIC REAL-TIME SCHEDULING WITH COMPLETION DEADLINES

CS 409, FALL 2013 SCHEDULING/32



AERIODIC REAL-TIME SCHEDULING WITH STARTING DEADLINES

CS 409, FALL 2013 SCHEDULING/33



RATE-MONOTONIC SCHEDULING

• Static-priority scheduling, priorities as-
signed on the basis of the cycle dura-
tion of the job: the shorter the cycle,
the higher is the job’s priority

• Rate monotonic analysis used to pro-
vide scheduling guarantees for a par-
ticular application: A feasible schedule
always exists as long as the CPU uti-
lization is below a specific bound

U =
n∑

i=1

Ci

Ti
≤ n(21/n − 1)

• limn→∞(n(21/n − 1)) = ln2 so all
deadlines can be met as long as the
CPU load is less than 69.3%

• The rest 30.7% load usable for non-
real-time tasks

CS 409, FALL 2013 SCHEDULING/34



PRIORITY INVERSION

• Can occur in any priority-based preemptive scheduling scheme

• Particularly relevant in the context of real-time scheduling

• Occurs when circumstances within the system force a higher priority task to wait for
a lower priority task

– Unbounded Priority Inver-
sion: the duration of a
priority inversion depends
not only on the time re-
quired to handle a shared
resource, but also on the un-
predictable actions of other
unrelated tasks

CS 409, FALL 2013 SCHEDULING/35



PRIORITY INHERITANCE

• Fixes the priority inversion problem

• Increase the priority of a process to the maximum priority of any pro-
cess waiting for any resource on which the process has a resource lock

– When a job blocks one or
more high priority jobs, it ig-
nores its original priority as-
signment and executes its
critical section at the highest
priority level of all the jobs it
blocks

– After executing its critical
section, the job returns to its
original priority level

CS 409, FALL 2013 SCHEDULING/36



LINUX SCHEDULING

• Three classes of processes
SCHED_FIFO: FIFO, real-time threads
SCHED_RR: Round-robin, real-time threads
SCHED_OTHER: Non-real-time threads

– Multiple priorities within each class

• SCHED_OTHER oses an O(1) scheduler

– Two priority ranges: time-sharing and real-time
– Real-time range from 0 to 99 and nice value from 100 to 139
– Different time quanta assigned for each class
– Kernel maintains two scheduling data structures for each processor in the sys-

tem

CS 409, FALL 2013 SCHEDULING/37



LINUX SCHEDULING (CONT’D)

• Active queues: 140 queues by priority
each containing ready tasks for that pri-
ority

• Expires queues: 140 queues con-
taining ready tasks with expired time
quanta

CS 409, FALL 2013 SCHEDULING/38


