CPU SCHEDULING

e Aims to assign processes to be executed by the CPU in a way that meets system
objectives such as response time, throughput, and processor efficiency

e Broken down into three separate functions:

— Long term scheduling = the decision to add to the pool of processes being exe-
cuted

— Medium term scheduling = the decision to add to the number of processes that
are partially or fully into main memory

— Short term scheduling = decides which available process will be executed by the
CPU

— 1/O scheduling = decides which process’ pending |/O request is handled by the
available 1/O devices

CS 409, FALL 2013 SCHEDULING/1

CPU SCHEDULING (CONT'D)

,/
A Activate
Ready/ ’ Release y
Suspend 4—_>(Runnlng _>(Exit
A Suspend
=|£
S|2
» 19
=S
-y Activate
S ocke ; !Blocked
uspend
Suspend

CS 409, FALL 2013 SCHEDULING/2

CPU SCHEDULING (CONT'D)

(New
Long-term
Long-term scheduling
scheduling
Ready/ . .
sovena —>(Ready ————(Running (Exit
P Medium-term Short-term
scheduling scheduling
Blocked/
—
(Suspend (Blocked

Medium-term
scheduling

CS 409, FALL 2013 SCHEDULING/2

NESTED SCHEDULING FUNCTIONS

Running

Z N

A 4

P> Ready

»{ Blocked

Short Term

Blocked,

Suspend
_(/R;ldy,
P\ Suspend

Medium Term

Long Term

CS 409, FALL 2013 SCHEDULING/3

QUEUING DIAGRAM

Time-out

Long-term
scheduling
Batch . Ready Queue 23}?:34:':“ Release
. I uli —
m» v 5 Processor
A
Medium-term
! scheduling
Interactive v Ready, Suspend Queue
users -y,
- -
Medium-term
scheduling
Blocked, Suspend Queue ,"
-7
L Blocked Queue
Event - Event Wait
Occurs

SCHEDULING/4

CS 409, FALL 2013

SHORT-TERM PRIORITY SCHEDULING

Release

RQO
Dispatch
— A 1 Processor
RQ1
e _
Admit —
RQn
E—
Preemption
-
Event Wait
-
Event
occurs Blocked Queue

CS 409, FALL 2013

SCHEDULING/5

LONG- AND MEDIUM-TERM SCHEDULER

e Long-term scheduler controls the degree of multiprogramming
— May need to limit this degree to provide satisfactory service to the current set of
processes

— Must decide when the operating system can take on one or more additional
processes

— Must decide which jobs to accept and turn into processes

x First come, first served
x Priority
x Execution times, 1/O requirements, etc.

e Medium-term scheduler is part of the swapping function

— Swapping-in decisions also based on the need to manage the degree of multi-
programming

— Also considers the memory requirements of the swapped-out processes

CS 409, FALL 2013 SCHEDULING/6

SHORT-TERM SCHEDULING (DISPATCHER)

e Executes most frequently, makes fine-grained decisions of which process to execute
next

e Invoked for every occurrence of an event that may lead to the blocking of the current
process

E.g, clock interrupt, I/O interrupt, OS call, signal, semaphore

e Attempts to optimize certain aspect of the system behaviour = needs a set of criteria
to evaluate its policy

User-oriented criteria (such as response time) relates the behaviour of the sys-
tem as perceived by the user

System-oriented criteria focus on efficient utilization of the CPU (or the rate at
which processes are completed)

Performance-related criteria (e.g., response time): quantitative, easy to measure

Non-performance-related criteria (e.g., predictability): qualitative, not os easy to
measure

CS 409, FALL 2013 SCHEDULING/7

SCHEDULING CRITERIA

e User Oriented, Performance Related

— Turnaround time: execution + waiting time between the submission of a process and its comple-
tion; appropriate for batch jobs

— Response time: time from the submission of a request until the response begins to be received
(particularly meaningful for interactive jobs)

— Deadlines: when deadlines exist (real time) they take precedence
e User Oriented, Other

— Predictability: a job should run in about the same amount of time and at about the same cost
regardless of the load (minimize surprise)

e System Oriented, Performance Related

— Throughput: maximize the number of processes completed per unit of time

— Processor utilization: the percentage of time that the processor is busy (efficiency measure,
significant for expensive, shared systems)

e System Oriented, Other

— Fairness: processes should be treated the same; no one should suffer starvation
— Priority enforcement: favor higher-priority processes if applicable

— Balancing resources: keep the resources of the system busy, favour processes that will under-
utilize stressed resources (also long- and medium-term scheduling criterion)

CS 409, FALL 2013 SCHEDULING/8

CHARACTERISTICS OF SCHEDULING ALGORITHMS

e Selection Function determines which ready process is selected next for execution

— May be based on priority, resource requirements, or the execution characteristics
— Significant characteristics:

w = time spent in system so far, waiting
e = time spent in execution so far
s = total service time required by the process (supplied or estimated)

e Decision mode determines when is the selection function exercised

— Non-preemptive — process continues to be in the running state until it terminates
or blocks itself on I/O

— Preemptive — processes may be moved from Running to Ready by the OS

CS 409, FALL 2013 SCHEDULING/9

FIRST-COME-FIRST-SERVED (FCFS)

Process Arrival time Service time

moOm>
oo hNO
Dok oW

e Strict queuing scheme, simplest policy
e Performs better for long processes
e Favours processor-bound processes over I/O-bound ones

First-Come-First
Served (FCFS)

ol Neol--N

:

CS 409, FALL 2013 SCHEDULING/10

RouND ROBIN (RR)

e Preemption based on a clock, also known as time slicing

e Effective in general-purpose, time-sharing systems; favours CPU-bound processes

Round-Robin g: | _||_ I i_i : I_i i | I_i E : I_i EE
(RR),¢=1 cy o o L L
N L .

| AT L
R4 ciilT .:::;!i’:
SRR RRRRECEns R ==

e Main design choice: the size of the time slice (or time quantum) — affects response time as well as
total service time

Process allocated Interaction Process allocated Process Process allocated Interaction
time quantum complete time quantum preempted time quantum complete
I | I i
¢ —r—> < > < »
Response time g-s q Other processes run
s < >
< > K
Quantum
q

CS 409, FALL 2013 SCHEDULING/11

VIRTUAL RounD RoBIN (VRR)

Time-out
Ready Queue
Admit Dispatch Release
| Processor | ——
—
Auxiliary Queue
/01 - I/0 1 Wait
Occurs
I/0 1 Queue
1I/0 2 - I/0 2 Wait
Occurs
I/0 2 Queue
I/On - I/0 n Wait
Occurs
I/O n Queue

CS 409, FALL 2013

SCHEDULING/12

SHORTEST PROCESS NEXT (SPN)

e Non-preemptive, selects the process with the shortest expecting processing time
e Short processes jump the queue, longer processes may starve

I

Shortest Process
Next (SPN)

[]

e Main difficulty: obtain an (estimate of) the running time

=O AW

— If estimate way off (shorter) the system may abort the job

CS 409, FALL 2013 SCHEDULING/13

SHORTEST REMAINING TIME (SRT)

e Preemptive variant of SPN

e Scheduler always chooses the process that has the shortest expected remaining

processing time

Shortest Remaining
Time (SRT)

e Increased risk of starvation for longer processes

mO A=

e But turnaround performance superior to SPN since a short job is given immediate

preference

CS 409, FALL 2013

SCHEDULING/14

HIGHEST RESPONSE RATIO NEXT (HRRN)

e Chooses next process with the greatest ratio

Ratio =

Highest Response
Ratio Next (HRRN)

e Attractive because it accounts for the age of the process
e Shorter processes are favoured, but longer processes have a chance

— The longer a process waits, the greater its ratio

HES AR

time spent waiting 4 expected service time

expected service time

CS 409, FALL 2013

SCHEDULING/15

FEEDBACK SCHEDULING

RQO Release
Admit
........... > - - - = = == = - - - p»| Processor
: RQ1 Release
fmmeenn p | | | | | | fermmmmmm=aa > Processor
® &6 0 ®---------- '
R LR e o o
' RQn Release
""" > L - = = = = = = = = = p»| Processor
— --

CS 409, FALL 2013 SCHEDULING/16

FEEDBACK PERFORMANCE SCHEDULING

e Good when no estimate running time is available — will penalize jobs that have been

running the longest instead
e Preemptive, dynamic priority

e Each time a process is preempted, it is also demoted to a lower-level queue

e Time quanta may be different in different queues

A 1 1 : : : : 1 1 : 1 1 : 1 1 1 1
Feedback B ' | (T T T 1 |
q= 1 C : : 1 1 I 1 | : : 1 1 1 1 1 1
Do ' A I N I R I
Eov A R
A : ; Lo ; ; A,
Feedback B . . S Lo
q=2' C. o L Vo L L
Db o o
E 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
CS 409, FALL 2013 SCHEDULING/17

COMPARISON OF SCHEDULING ALGORITHMS

FCFS RR SPN SRT HRRN Feedback
: : w—s
Selection func- max[w] constant min[s] min[s - €] max(.)
tion
. Non- Preemptive Non- Preemptive Non- Preemptive
Decisionmode eomptive (at time preemptive (at ar- preemptive (at time
quantum) rival) quantum)
Notempha- Low it High High High Not empha-
Throughput sized quantum sized
is too
small
: May be Good Good Good Good Not empha-
Response time pjgp for short for short sized
processes processes
Minimum Minimum Can Dbe Can be Can be Can be
Overhead high high high high
Penalizes Fair treat- Penalizes Penalizes Good May favor
Effect on pro- ghort & ment long pro- long pro- balance 1/O bound
cesses /O bound cesses cesses processes
processes
_ No No Possible Possible No Possible
Starvation

CS 409, FALL 2013

SCHEDULING/18

COMPARISON OF SCHEDULING ALGORITHMS (CONT’D)

Process B C D E

Arrival Time 2 4 6 8

Service Time (T5%) 6 4 5 2 Mean
FCFS Finish Time 9 13 18 20

Turnaround Time (7} 7 9 12 12 8.60

T./Ts 1.00 117 225 240 6.00 2.56

RRg=1 Finish Time
Turnaround Time (77)
T, /T

RRg=4 Finish Time
Turnaround Time (77)

18 17 20 15

16 13 14 7 10.80
267 325 280 350 2.71

17 11 20 19

15 7 14 11 10.00

—
w

T,/Ts 1.00 25 175 280 550 2.71
SPN Finish Time 9 15 20 11
Turnaround Time (7} 7 11 14 3 7.60
T, /T 1.00 117 275 280 150 1.84
SRT Finish Time 15 8 20 10
Turnaround Time (77) 13 4 14 2 7.20
T./Ts 1.00 2.17 1.00 280 1.00 1.59
HRRN Finish Time 9 13 20 15
Turnaround Time (77) 7 9 14 7 8.00
T, /T, 1.00 117 225 280 35 2.14

20 16 19 11
18 12 13 3 10.00
3.00 3.00 260 15 2.29
17 18 20 14
Turnaround Time (7},) 15 14 14 6 10.60
T, /T 250 350 280 3.00 263

FBg=1 Finish Time
Turnaround Time (7}
T/ Ts

FB g = 2" Finish Time

—
w

—
w

CS 409, FALL 2013 SCHEDULING/19

TRADITIONAL UNIX SCHEDULING

e Used in both SV R3 and 4.3 BSD UNIX - time-sharing, interactive systems

e Provides good response time for interactive users while ensuring that low-priority
background jobs do not starve

e Uses multilevel feedback using round robin within each of the priority queues
e Makes use of one-second preemption
e Priority is based on process type and execution history

CPU;(v—1
CPU(i) = g)
PU; (2
Pi(i) = Basej—l—CTj(z)—l—nicej

— CPU,(3) = processor utilization by process j through interval

— P;(¢) = priority of process j at the beginning of interval ¢ (lower is higher)
— Base; = base priority of process j

— nice; = user-defined adjustment factor

CS 409, FALL 2013 SCHEDULING/20

MULTIPROCESSOR SCHEDULING

e Granularity of synchronization:

— Independent — multiple, unrelated processes; typical for time-sharing systems
x Multiprocessor systems will do the same thing, only faster

— Coarse (200—1M instructions) — concurrent processes in a multiprogramming
environment

+ No significant change for multiprocessor systems
— Medium (20—200 instructions) — parallel processing in a single application

« Explicit parallelism (multiple threads)
x Frequent interaction affects scheduling considerably

— Fine (< 20 instructions) — parallelism inherent in a single instruction stream;
complex interaction

x NO good, general solution

e Design issues: dispatching, use of multiprogramming on every individual processor,
assignment of processes to processor

CS 409, FALL 2013 SCHEDULING/21

ASSIGNING PROCESSES TO PROCESSORS

e Treat processors as a pool of resources and assign on demand
— Assumes symmetric multiprocessing (SMP)
e Assign processes to specific processors — group or gang scheduling

— Less overhead in the scheduling function
— Different processors can have different utilizations

e Both these methods need some way to decide which process goes on which pro-
cessor

— Master/slave: kernel always run on a particular (master) processor

x Master responsible for scheduling, slaves send requests to the master
« Conflict resolution is simplified (one processor controls everything)
x But the master can become a bottleneck

— Peer: kernel can run on any processor

x Each processor self-schedules from a pool of available processes
x Complicates the OS design

CS 409, FALL 2013 SCHEDULING/22

LOAD SHARING SCHEDULING

e No particular assignment to any processor; load distributed evenly across proces-
sors

e No centralized scheduler, single queue system — can be organized as seen earlier
(FCFS, RR, etc.)

e Disadvantages:

— Central queue system must be accessed under mutual exclusion (bottleneck)

— Preempted threads are unlikely to execute on the same processor, so caching is
less efficient

— All threads treated the same, so context switching is most of the time between
processes (expensive)

CS 409, FALL 2013 SCHEDULING/23

GANG SCHEDULING

e Simultaneous scheduling of threads that make up a single process

— Cheaper context switching
— Less scheduling overhead

e Particularly useful for medium- to fine-grained parallel applications (performance de-
grades when part of the application is blocked while other parts run)

CS 409, FALL 2013 SCHEDULING/24

DEDICATED PROCESSOR ASSIGNMENT

e Each thread of an application is assigned to one processor and will remain so until
the end of the program

e But if a thread is blocked, then that processor is idle (decreased utilization)

— However, in a highly parallel system with tens or hundreds of processors, pro-
cessor utilization is no longer so important as a metric for effectiveness or per-
formance

— The total avoidance of process switching during the lifetime of a program should
result in a substantial speedup of that program

CS 409, FALL 2013 SCHEDULING/25

DYNAMIC SCHEDULING

e Provide language and system tools that permit the number of threads in the process
to be altered dynamically

— This allows the operating system to adjust the load to improve utilization
e Both the operating system and the application are involved in making scheduling
decisions

e The scheduling responsibility of the operating system is primarily limited to processor
allocation

e This approach is superior to gang scheduling or dedicated processor assignment for
applications that can take advantage of it

CS 409, FALL 2013 SCHEDULING/26

POSIX THREAD SCHEDULING

e Process-contention scope (PCS) with scheduling competition within the process

e System-contention scope (SCS) with scheduling competition among all threads in
system

e Pthreads API allows specifying either PCS or SCS during thread creation

PTHREAD_SCOPE_PROCESS schedules threads using PCS scheduling
PTHREAD_SCOPE_SYSTEM schedules threads using SCS scheduling

int 1i; pthread t tid[NUM_THREADS]; pthread attr t attr;

pthread attr init (&attr); /* get the default attributes =/

/* set the scheduling algorithm to PROCESS or SYSTEM =/

pthread attr setscope(&attr, PTHREAD_SCOPE_SYSTEM) ;

/* set the scheduling policy - FIFO, RT, or OTHER x/

pthread attr setschedpolicy(&attr, SCHED_OTHER) ;

for (i = 0; i1 < NUM THREADS; i++) /% create the threads =/
pthread create(&tid[i], &attr, runner,NULL) ;

for (i = 0; i < NUM THREADS; i++) /% join on each thread =/
pthread join(tid[i], NULL);

CS 409, FALL 2013 SCHEDULING/27

REAL-TIME SYSTEMS

e Real time system: The correctness of the system depends not only on the logical
result of the computations but also on the time at which those results are produced

— Most often time constraints are stated as deadlines

— Tasks or processes attempt to control or react to events that take place in the
outside world

— These events occur in real time and tasks must be able to keep up with them
— The scheduler is the most important component of these systems

e Hard real time: Timing violations will cause unacceptable damage or a fatal error to
the system

e Soft real time: Deadlines are desirable but not mandatory, so that it makes sense to
schedule and execute a job even if its deadline has passed

e Further characteristics: determinism, responsiveness, reliability, fail-soft operation
e Real-time tasks can be

— Periodic, with requirements stated as “once per period T or “every T’ time units
— Aperiodic, which may have constraints on both start and end times

CS 409, FALL 2013 SCHEDULING/28

REAL-TIME SCHEDULING

Request from a

Request from a
real-time process Real-time process added to real-time process Real-time process added
run queue to await its next slice to head of run queue
P T A T e mmm -
2l ¥ 2l ¥
Real-time Real-time
Process 1 Process 2 Process n process Current process process
Clock
ti(c)i \Current process
<= Scheduling time > < Scheduling time == blocked or completed
(a) Round-robin Preemptive Scheduler (b) Priority-Driven Nonpreemptive Scheduler
Request from a Request from a
real-time process Wait for next real-time process
preemption point Real-time process preempts current
- ,+ brocess and executes immediately
‘ \4 2l /
Real-time Real-time
Current process Current process
process process
Preemption Scheduling time
Scheduling time

point
(d) Immediate Preemptive Scheduler

(¢) Priority-Driven Preemptive Scheduler on Preemption Points

SCHEDULING/29

CS 409, FALL 2013

CLASSES OF REAL-TIME SCHEDULING

e Static table-driven approaches

— Performs a static analysis of feasible schedules of dispatching
— Result is a schedule that determines at run time when a task must start

e Static priority-driven preemptive approaches

— A static analysis is performed but no schedule is drawn up

— Analysis is used to assign priorities to tasks so that a traditional priority-driven
preemptive scheduler can be used

e Dynamic planning-based approaches

— Feasibility is determined at run time rather than offline

— One result of the analysis is a schedule or plan that is used to decide when to
dispatch the task at hand

e Dynamic best effort approaches

— No feasibility analysis is performed
— System tries to meet deadlines, aborts any started process with missed deadline

CS 409, FALL 2013 SCHEDULING/30

DEADLINE SCHEDULING

e Real-time operating systems will start real-time tasks as rapidly as possible and
emphasize rapid interrupt handling and task dispatching

e Real-time applications are generally not concerned with sheer speed but rather with
completing (or starting) tasks at the most valuable times

e Priorities provide a crude tool and do not capture the requirement of completion (or
initiation) at the most valuable time

e Information used for deadline scheduling:

— Ready time — Starting deadline — Completion deadline
— Processing time — Resource requirements — Priority
— Subtask scheduler (task may be split into a mandatory and an optional subtask)

CS 409, FALL 2013 SCHEDULING/31

PERIODIC REAL-TIME SCHEDULING WITH COMPLETION DEADLINES

B2
deadline

B1
deadline

~~
172]
g
o
A E
fo
g
poL - I N S
g —
=
S
-
R I
- —
IR
]
= e
=
RIS
: LERls
1 I 1
]
=}
> R
en
2 Bl .
| F-----
3
S
CRLTT
: BPH.
- —
&
© —
=l =
o Rle
—
<
. - _____

Arrival times, execution

times, and deadlines

B2

A4

A3 | B2

A2 | B1

B1

Al

Fixed-priority scheduling;

A has priority

Fixed-priority scheduling;

B has priority

[\
-4
<+
n <
<
Qe
wy I
A 3¢}
S <
=l
Qle—z
==}
o
A -
<+—<
b
==}
—-
<

Earliest deadline scheduling

using completion deadlines

SCHEDULING/32

CS 409, FALL 2013

AERIODIC REAL-TIME SCHEDULING WITH STARTING DEADLINES

Arrival times

Requirements

Starting deadline
Arrival times

Earliest
deadline

Service

Starting deadline

Arrival times
Earliest
deadline Service
with unforced

idle ti
1dle fimes Starting deadline

Arrival times

First-come
first-served
(FCFS)

Service

Starting deadline

0 10 20 30 40 50 60 70 80 90 100 110 120
e
A B e DB
A SR 2N 2R | R N
I N T S A N A SN
- B . € . E b A
Abobe e L
el e e N
—F & § . f . F . f
B(mssed) : € : E &+ D A
AB ! €CDE E
vV VY vV ¥V y L !
; B C E D A
SEEEEEER NN
vV oy v ¥y oo :
A | C D | >
Lo o A o 1
B (missed) C E (missed) D A

CS 409, FALL 2013

SCHEDULING/33

RATE-MONOTONIC SCHEDULING

Static-priority scheduling, priorities as-
signed on the basis of the cycle dura-
tion of the job: the shorter the cycle,
the higher is the job’s priority

Rate monotonic analysis used to pro-
vide scheduling guarantees for a par-
ticular application: A feasible schedule
always exists as long as the CPU uti-
lization is below a specific bound

U:Zf- < n(2Y/" - 1)
=1

iMoo (n(2Y™ — 1)) = In2 so all
deadlines can be met as long as the
CPU load is less than 69.3%

The rest 30.7% load usable for non-
real-time tasks

High Highest rate and

A highest priority task .

ol
7
7
4
o

.3> -

=

s &

. &

7
7
< $ ~——— Lowest rate and
- lowest priority task
-
Low
Rate (Hz)
< Cycle 1 > Cycle 2 >

P Processing Idle Processing |

44— task Pperiod T———p

CS 409, FALL 2013

SCHEDULING/34

PRIORITY INVERSION

e Can occur in any priority-based preemptive scheduling scheme

e Particularly relevant in the context of real-time scheduling
e Occurs when circumstances within the system force a higher priority task to wait for

a lower priority task

— Unbounded Periority Inver-
sion: the duration of a
priority inversion depends
not only on the time re-
quired to handle a shared
resource, but also on the un-
predictable actions of other
unrelated tasks

blocked by T;

(attempt to lock s) s locked

\4
pre;)emr[l? ted preempted s unlocked

s locked /y 1 by T, l
[
t t, t ty t te t7 t
1 2 B3 4 s 6 U7 lg

—

time

CS 409, FALL 2013

SCHEDULING/35

PRIORITY INHERITANCE

e Fixes the priority inversion problem

e Increase the priority of a process to the maximum priority of any pro-
cess waiting for any resource on which the process has a resource lock

blocked by T;
(attempt to lock s) s locked

— When a job blocks one or
more high priority jobs, it ig-
nores its original priority as-
signment and executes its
critical section at the highest T,
priority level of all the jobs it
blocks s locked by T, pr(:f;nTPted s unlocked

— After executing its critical N : l
section, the job returns to its
original priority level

\4

preempted

t; ty t; ty ts te t; tg

CS 409, FALL 2013 SCHEDULING/36

LINUX SCHEDULING

A | minimum
e Three classes of processes oy —
mi (J
SCHED_FIFO: FIFO, real-time threads c | middie P> B> C—>A—>
SCHED_RR: Round-robin, real-time threads . F— (b Flon i FIEO seheduling
SCHED_OTHER: Non-real-time threads
(a) Relative thread priorities
— Multiple priorities within each class D—>B—>C—>B—>C—>A—>

(c) Flow with RR scheduling

e SCHED_OTHER o0ses an O(1) scheduler

— Two priority ranges: time-sharing and real-time
— Real-time range from 0 to 99 and nice value from 100 to 139
— Different time quanta assigned for each class

— Kernel maintains two scheduling data structures for each processor in the sys-
tem

CS 409, FALL 2013 SCHEDULING/37

LINUX SCHEDULING (CONT'D)

numeric relative time
priority priority quantum
0 highest 200 ms
* real-time
: tasks
99
100
: other
. tasks
140 lowest 10 ms

e Active queues: 140 queues by priority
each containing ready tasks for that pri-
ority

e Expires queues: 140 queues con-
taining ready tasks with expired time

quanta
active expired
array array
priority task lists priority task lists
[0] 0—0 [0] 0—0—0
[1] O0—0—0 [1] O
[140] ® [140] 0—o0

CS 409, FALL 2013

SCHEDULING/38

