
DAEMONS

• Daemon = A program does something useful without interacting directly with the user
(sits in the background)

◦ Technically not part of the kernel, but still part of the OS
◦ Good example: network (TCP) servers

• A (Unix) daemon is different from a normal program

◦ In particular, a server does not interact with a user
◦ It communicates instead with other programs maybe over a network
◦ It also spawns threads/processes (which are not under immediate user control)

• One is faced thus with a bunch of new issues, including

◦ preventing users to affect server’s execution in other ways than the ones speci-
fied

◦ providing a mechanism for the server to report status and errors
◦ resource management
◦ access control and other security issues

CS 409, FALL 2013 DAEMONS/1



DAEMONS = BACKGROUND

• A normal program runs in foreground

◦ It is attached to a terminal (more general, a “tty”)
◦ It receives user input from that terminal
◦ It prints output (using cout<<, printf, . . . ) and error messages (using
cerr<<, perror, . . . ) to the same terminal

• A daemon runs in background

◦ Is not attached to any terminal
◦ Instead, it is launched upon boot, maybe even before terminals are born
◦ Thus, it does not accept user input
◦ It must send the output to something else than a terminal

CS 409, FALL 2013 DAEMONS/2



PROGRAMMING A DAEMON

• The easy way: put the daemon in the background explicitly

bbserv -c bb.conf -f bbfile &

• The hard way: the daemon puts itself into the background

◦ Start with a process that does the server initialization
◦ It prints whatever messages it wants (to the terminal)
◦ It then goes in the background for the rest of the job

int main (...) {

Initialize stuff (network server: socket binding, preparation of the file system)
int bgpid = fork();

if (bgpid < 0) {

perror("startup fork");

return 1; }

if (bgpid) // parent dies!

return 0;

Child continues and becomes the daemon
}

CS 409, FALL 2013 DAEMONS/3



THE HARD WAY (CONT’D)

• OK, but why?

◦ A daemon is started up by the init process
◦ init starts the daemons in a specific order

– e.g., remote file system access should be started before anybody needs it

◦ init cannot put everything into the background from the very start

– it has to make sure that the daemon actually started before moving forward

◦ On the other hand, if the daemon never gets to the background, init never gets
a chance to go ahead and start the other services

◦ Ergo, a daemon that expects to be launched by init (they all should!)

– sits in the foreground until it makes sure that the startup succeeded
– goes then into background for the actual work

CS 409, FALL 2013 DAEMONS/4



TALKING TO DAEMONS

• We have first to find the process id of the daemon process

◦ We do ps aux, we get a lot of lines like this

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
bruda 13319 0.0 0.1 2572 816 pts/1 S 12:15 0:00 bbserv bbb

and then we hunt for our daemon between them
◦ We do ps aux | grep name, we get only the lines that contain name
◦ We already have the pid (useful!)

– But how?

• We could then send signals to the daemon

kill pid sends SIGQUIT to pid (which may terminate)
kill -KILL pid sends SIGKILL to pid (which will terminate)
kill -HUP pid sends SIGHUP to pid (which normally restarts)

CS 409, FALL 2013 DAEMONS/5



LONELY DAEMONS

• Daemons are lonely. It does not make sense to run multiple copies of a daemon on
the same machine

◦ How do we prevent multiple copies to run?

• Each daemon has a well-known associated lock file

◦ Different daemons use different lock files, but a daemon will always use the same
lock file

• Immediately upon startup the daemon tries to acquire a lock on this file

◦ If it succeeds, it goes ahead with the rest
◦ If it fails, it terminates (there is another copy running)

– An error message would be nice too. . .

◦ When the daemon exits, it releases the lock on the file and deletes the file
◦ Loosely speaking, each daemon runs in a critical region

• The lock file is also a good place to hold the process id of the daemon!

CS 409, FALL 2013 DAEMONS/6



LONELY DAEMONS

• Daemons are lonely. It does not make sense to run multiple copies of a daemon on
the same machine

◦ How do we prevent multiple copies to run?

• Each daemon has a well-known associated lock file

◦ Different daemons use different lock files, but a daemon will always use the same
lock file

• Immediately upon startup the daemon tries to acquire a lock on this file

◦ If it succeeds, it goes ahead with the rest
◦ If it fails, it terminates (there is another copy running)

– An error message would be nice too. . .

◦ When the daemon exits, it releases the lock on the file and deletes the file
◦ Loosely speaking, each daemon runs in a critical region

• The lock file is also a good place to hold the process id of the daemon!

CS 409, FALL 2013 DAEMONS/6



LONELY DAEMONS

• Daemons are lonely. It does not make sense to run multiple copies of a daemon on
the same machine

◦ How do we prevent multiple copies to run?

• Each daemon has a well-known associated lock file

◦ Different daemons use different lock files, but a daemon will always use the same
lock file

• Immediately upon startup the daemon tries to acquire a lock on this file

◦ If it succeeds, it goes ahead with the rest
◦ If it fails, it terminates (there is another copy running)

– An error message would be nice too. . .

◦ When the daemon exits, it releases the lock on the file and deletes the file
◦ Loosely speaking, each daemon runs in a critical region

• The lock file is also a good place to hold the process id of the daemon!

CS 409, FALL 2013 DAEMONS/6



GRUMPY DAEMONS

• Except for the signals they like, daemons do not want to talk to you

• If you leave them in the sate typical for a normal program, they might even get angry
and refuse to do the work

◦ This happens when they try to access standard input (descriptor 0)
◦ So we have to close descriptor 0
◦ What the heck, we close all the descriptors except standard output and standard

error!

for (int i = 0; i < getdtablesize(); i++)
if (i != 1 && i != 2)
close(i);

◦ Closing descriptors is very important, we thus prevent the daemon from con-
suming resources unnecessarily

◦ But note that we close them before opening back those descriptors we actually
need (such as who knows what file on which the daemon does its stuff)

• Closing descriptor 0 does not make our daemon happy though! (why?)

CS 409, FALL 2013 DAEMONS/7



GRUMPY DAEMONS (CONT’D)

• The daemon may still try to access descriptor 0

◦ Many library functions assume that the first three descriptors are open
◦ We just exchange one error for another!

• So we open descriptor 0 again

◦ This time, descriptor 0 will point to a special device which does nothing (“bit
bucket”)

◦ This device is called, suggestively, /dev/null

– reading from /dev/null always return an end of file
– anything you write to /dev/null is simply discarded

for (int i = 0; i < getdtablesize(); i++)
if (i != 1 && i != 2)
close(i);

// We closed descriptor 0 already, so this
// will be the first one available!
int fd = open("/dev/null", O_RDWR);

CS 409, FALL 2013 DAEMONS/8



DETACHED DAEMONS

• Each Unix process inherits a connection to its controlling tty

◦ A user that started a process can control it by issuing appropriate control com-
mands to that process’ controlling tty

• Unlike normal programs, daemons should not receive signals generated by the pro-
cess that started it

◦ Signaling from the tty to the piece of code that starts the daemon is acceptable
(sometimes desired), signaling to the daemon itself is not

◦ A daemon must detach itself from the controlling tty

#include <sys/ioctl.h>

int fd = open("/dev/tty",O_RDWR);
ioctl(fd,TIOCNOTTY,0);
close(fd);

CS 409, FALL 2013 DAEMONS/9



DETACHED DAEMONS AND THEIR OUTPUT

• OK, so we have now no terminal, where do we put the output?

◦ Initialization code outputs to whatever is inherited from the parent process
◦ We then redirect standard output (descriptor 1) and standard error (descriptor 2)

to files

// We close everything!!
for (int i = getdtablesize() - 1; i >= 0 ; i--)
close(i);

int fd = open("/dev/null", O_RDWR); // Descriptor 0
// We now re-open descriptors 1 and 2, in this order:

– Same file:

fd = open("global-output-file", O_RDWR);
dup(fd);

– Different files:

fd = open("output-file", O_RDWR);
fd = open("error-file", O_RDWR);

CS 409, FALL 2013 DAEMONS/10



DETACHED DAEMONS AND THEIR OUTPUT

• OK, so we have now no terminal, where do we put the output?

◦ Initialization code outputs to whatever is inherited from the parent process
◦ We then redirect standard output (descriptor 1) and standard error (descriptor 2)

to files

// We close everything!!
for (int i = getdtablesize() - 1; i >= 0 ; i--)
close(i);

int fd = open("/dev/null", O_RDWR); // Descriptor 0
// We now re-open descriptors 1 and 2, in this order:

– Same file:

fd = open("global-output-file", O_RDWR);
dup(fd);

– Different files:

fd = open("output-file", O_RDWR);
fd = open("error-file", O_RDWR);

CS 409, FALL 2013 DAEMONS/10



DAEMONS DON’T LIKE SIGNALS

• There is no signal from the controlling tty, but nonetheless a daemon may receive
signals (e.g., from you when you use the command kill)

• Some signals (e.g., SIGHUP, maybe) have some meaning to the daemon

◦ One signal always has some meaning to any Unix program, namely SIGKILL

• Signals with meanings should have associated signal handlers (except SIGKILL)

signal(signal,handler-function);

• Some other signals do not have any meaning

◦ Signals that are not needed should be ignored
◦ There is a predefined function that does exactly this: SIG_IGN

signal(signal,SIG_IGN);

CS 409, FALL 2013 DAEMONS/11



SIGPIPE

• Notable signal

• Sent to a network server when a client quits unexpectedly (without shutting down the
socket)

• When unhandled a SIGPIPE brings down the whole process

• A server must not die when a client misbehaves

• Ergo, this signal should always be explicitly handled

◦ ignoring it is fine for most applications, since the socket also receives an end of
file

CS 409, FALL 2013 DAEMONS/12



DAEMONS ARE NOT GREGARIOUS

• Unix places each process in a process group

• It can then treat a set of related processes as one entity

• A daemon inherits membership in a process group

• But: usually, a daemon operates independently from any process group

◦ E.g., it should not receive signals sent to its parent’s group
◦ The daemon must thus leave its parent’s group:

setpgid(what-process,to-what-group);

◦ The process id of the current process (which is passed to setpgid) can be
obtained by using the function getpid

◦ To create a new, private group we pass 0 as second argument of setpgrp. So
we do:

setpgrp(getpid(),0);

CS 409, FALL 2013 DAEMONS/13



SECURE DAEMONS

• Daemons may run with root privileges

◦ In other words, they can do whatever they please with your system
◦ So you the programmer have to make sure they do not do things that interfere

with normal system operation

• Careful programming is one way of keeping them at bay

◦ In particular, it is crucial that you check for array bounds, and that you do not
access memory areas you do not own

◦ Not checking for these is the most usual cause for issuing security updates (and
for people cracking into your system)

◦ This is of course a complex problem

• In addition, you should be careful about what daemons write to disk and where

CS 409, FALL 2013 DAEMONS/14



DAEMONS AND THEIR DIRECTORIES

• When a program is launched, it inherits an environment variable called the current
working directory

• When a program creates or opens a file, it looks in this current working directory

• Daemons are launched by the init script, which works in a directory whose content
should not be modified

• Daemons have this habit to write on disk

• You can specify the directory they write into by providing absolute paths to your files

• But a daemon that encounters an error condition might dump core (write to disk a
memory image for debugging purposes. . . in the current working directory!)

• But a daemon started by the system administrator will have the current directory as
the home directory of the administrator (very bad!)

• But a daemon working in some directory will prevent that directory to be unmounted
even if the daemon does not really use the directory for anything

• Conclusion: You should move a daemon to a known, safe directory. You then do:

chdir("/");

CS 409, FALL 2013 DAEMONS/15



CONFIDENTIAL DAEMONS

• Some data that is written to files is log data, which should be inspectable by many
people

• Some other data should not be accessible to anybody else (e.g., passwords)

• Each file in a Unix file system has a set of permissions

◦ You can specify at creation time the permissions of the file you create
◦ You can also specify a set of permissions that will never be set (the umask)

read permission set
write permission set

permission not set
execute permission set

r

−
x
w

others:

group:

ow
ner:

rwxr−xrw−
111101110

7 5 6

756

740

permissions for the file (declared):
umask (denied permissions):
actual permissions for the file:

Bitwise AND with
the negated umask

037

CS 409, FALL 2013 DAEMONS/16



SETTING A UMASK

• You do not want to run into the possibility of creating a file owned by the administrator
and with all the permissions set (777) Not even by chance!

• So, besides setting suitable permissions for each file you create, it is a very good
idea to provide a suitable umask for the daemon as a whole

• To set a (new) umask, you use the system call umask

◦ It is very comfortable to work with numbers in octal when you deal with file per-
missions

– This way a digit corresponds with a set of permissions for a given group of
users

– In C/C++ a literal integer whose first digit is 0 is considered to be in base 8
– So when you call umask, it is likely that you do not want to write

umask(137);

but rather

umask(0137);

• Always keep in mind that the umask specifies permissions that are denied

CS 409, FALL 2013 DAEMONS/17


