
DEADLOCK

• The permanent blocking of a set of processes that either compete for resources or
communicate with each other

• A set of processes is deadlocked when each process in the set is blocked awaiting
an event that can only be triggered by another blocked process in the set

• Permanent; no efficient solution

CS 409, FALL 2013 DEADLOCK AND STARVATION/1

JOINT PROGRESS WITH DEADLOCK

CS 409, FALL 2013 DEADLOCK AND STARVATION/2

JOINT PROGRESS WITHOUT DEADLOCK

CS 409, FALL 2013 DEADLOCK AND STARVATION/3

RESOURCE CATEGORIES AND DEADLOCK

• Reusable = safely used by only one process at a time but not depleted by that use

– Processors, I/O channels, memory, devices, files, databases, semaphores
– Sample deadlocks:

P1: P2:
lock(&l2); lock(&l1);
... ...
lock(&l1); lock(&l2);
... ...
unlock(&l2); unlock(&l2);
unlock(&l1); unlock(&l1);

(200 KB memory available overall)

P1: P2:
Request 80 KB Request 70 KB
... ...
Request 60 KB Request 80 KB
... ...

• Consumable = can be created (produced) and destroyed (consumed)

– interrupts, signals, messages, information, data in I/O buffers
– Sample deadlock (receive blocking):

P1: P2:
Receive(P2) Receive(P1)
... ...
Send(P2,M1) Send(P1,M2)
... ...

CS 409, FALL 2013 DEADLOCK AND STARVATION/4

CONDITIONS FOR DEADLOCK

• Mutual exclusion
• Hold-and-wait (a process may hold allocated resources while awaiting assignment

of others)
• No preemption (no resource can be forcibly removed from a process holding it)
• Circular wait (a closed chain of processes exists, such that each process holds at

least one resource needed by the next process in the chain)
• Dealing with deadlock conditions:

– Prevent deadlock (adopt a policy that eliminates one of the conditions)
– Avoid deadlock (make the appropriate dynamic choices based on the current

state of resource allocation)
– Detect deadlock (attempt to detect the presence of deadlock and take action to

recover)

CS 409, FALL 2013 DEADLOCK AND STARVATION/5

APPROACHES TO DEADLOCK DETECTION, PREVENTION, AND AVOIDANCE

• Prevention: conservative, undercommits resources

– Requesting all resources at once
Advantages: best for processes that perform a single burst of activity; no preemption necessary
Disadvantages: inefficient; delays process initiation; requirements must be known in advance

– Preemption
Advantages: convenient for resources whose state can be saved and restored easily
Disadvantages: preempts more often than necessary

– Resource ordering
Advantages: enforceable via compile-time checks, so needs no run-time computation
Disadvantages: disallows incremental resource requests

• Avoidance: finds at least one safe path; midway between detection and prevention

Advantages: no preemption necessary

Disadvantages: future resource requirements must be known; processes blocked for long periods

• Detection: requested resources are granted where possible (very liberal); must be invoked periodi-
cally to test for deadlock

Advantages: never delays process initiation; facilitates online handling

Disadvantages: inherent preemption losses

CS 409, FALL 2013 DEADLOCK AND STARVATION/6

RESOURCE ALLOCATION GRAPHS

CS 409, FALL 2013 DEADLOCK AND STARVATION/7

RESOURCE ALLOCATION GRAPHS (CONT’D)

CS 409, FALL 2013 DEADLOCK AND STARVATION/8

DEADLOCK PREVENTION

• Design a system in such a way that the possibility of deadlock is excluded
• Two main methods:

– Indirect – prevent the occurrence of one of the three necessary conditions
∗ Mutual exclusion: not required for sharable resources (but must hold for non-

sharable resources)
∗ Hold and wait: require that a process request all of its required resources at

one time and block the process until all requests can be granted simultane-
ously

∗ No preemption: if a process holding certain resources is denied a further
request, that process must release its original resources and request them
again

∗ Circular wait: define a linear ordering on resource types
– Direct – prevent the occurrence of a circular wait

CS 409, FALL 2013 DEADLOCK AND STARVATION/9

DEADLOCK AVOIDANCE

• A decision is made dynamically whether the current resource allocation request will,
if granted, potentially lead to a deadlock

• Requires knowledge of future process requests
• Approaches:

– Resource Allocation Denial: do not grant an incremental resource request to a
process if this allocation might lead to deadlock

– Process Initiation Denial: do not start a process if its demands might lead to
deadlock

• Algorithms:

– Single instance of a resource type: use the resource-allocation graph
∗ The resource is granted iff granting it does not create a cycle

– Multiple instances of a resource type: use the banker’s algorithm

CS 409, FALL 2013 DEADLOCK AND STARVATION/10

RESOURCE ALLOCATION DENIAL: THE BANKER’S ALGORITHM

• State of the system reflects the current allocation of resources to processes
• Safe state is one in which there is at least one sequence of resource allocations to

processes that does not result in a deadlock; the opposite is an unsafe state

struct state{ int recource[m]; int available[m];
int claim[n][m]; int alloc[n][m];

if (alloc[i, *] + request[*] > claim[i, *]) < error >; // tot. request > claim
else if (request[*] > available[*]) < suspend process >;
else { // simulate alloc

< define newstate as:
alloc[i,*] = alloc[i,*] + request[*];
available[*] = available[*] - request[*]; >;

}
if (safe(newstate)) < carry out the allocation >;
else {

< restore original state >;
< suspend process >;

}

CS 409, FALL 2013 DEADLOCK AND STARVATION/11

BANKER’S ALGORITHM (CONT’D)

boolean safe (state S) {
int currentavail[m];
process rest[<number of processes>];
currentavail = available;
rest = {all processes};
possible = true;
while (possible) {

<find a process Pk in rest such that
claim [k,*] - alloc [k,*] <= currentavail;>

if (found) { /* simulate execution of Pk */
currentavail = currentavail + alloc [k,*];
rest = rest - {Pk};

}
else possible = false;

}
return (rest == null);

}

CS 409, FALL 2013 DEADLOCK AND STARVATION/12

SAFE STATES

CS 409, FALL 2013 DEADLOCK AND STARVATION/13

SAFE STATES (CONT’D)

CS 409, FALL 2013 DEADLOCK AND STARVATION/14

UNSAFE STATES

CS 409, FALL 2013 DEADLOCK AND STARVATION/15

DEADLOCK AVOIDANCE (CONT’D)

• Advantages

– It is not necessary to preempt and rollback processes, as in deadlock detection
– It is less restrictive than deadlock prevention

• Restrictions

– Maximum resource requirement for each process must be stated in advance
– Processes under consideration must be independent and with no synchroniza-

tion requirements
– There must be a fixed number of resources to allocate
– No process may exit while holding resources

CS 409, FALL 2013 DEADLOCK AND STARVATION/16

DEADLOCK DETECTION ALGORITHMS

• Deadlock prevention is conservative (limits access by restricting processes)
• By contrast deadlock detection strategies do the opposite: resource requests are

granted whenever possible

– Check for deadlock can be made as frequently as needed

• Advantages:

– Early detection
– Relatively simple algorithms

• Disadvantage:

– Frequent checks consume considerable processor time

• Recovery strategies necessary

– Abort all deadlocked processes
– Back up deadlocked processes to some checkpoint and restart all processes
– Successively abort deadlocked processes until deadlock no longer exists
– Successively preempt resources until deadlock no longer exists

CS 409, FALL 2013 DEADLOCK AND STARVATION/17

THE DINING PHILOSOPHERS PROBLEM

• Mutual exclusion: no two
philosophers can use the
same fork at the same time

• Avoid deadlock and starvation:
no philosopher must starve to
death

CS 409, FALL 2013 DEADLOCK AND STARVATION/18

DINING PHILOSOPHERS WITH SEMAPHORES

semaphore fork [5] = {1, 1, 1, 1, 1};

void philosopher (int i) {
while (true) {

think();
wait (fork[i]);
wait (fork [(i+1) mod 5]);
eat();
signal(fork [(i+1) mod 5]);
signal(fork[i]);

}
}

void main() {
for int i = 0 to 5 run in parallel philosopher(i);

}

CS 409, FALL 2013 DEADLOCK AND STARVATION/19

BETTER DINING PHILOSOPHERS

semaphore fork[5] = {1, 1, 1, 1, 1};
semaphore room = 4;

void philosopher (int i) {
while (true) {
think();
wait (room);
wait (fork[i]);
wait (fork [(i+1) mod 5]);
eat();
signal (fork [(i+1) mod 5]);
signal (fork[i]);
signal (room);

}
}

void main() {
for int i = 0 to 5 run in parallel philosopher(i);

}

CS 409, FALL 2013 DEADLOCK AND STARVATION/20

DINING PHILOSOPHERS WITH A SEMAPHORE

monitor dining_controller;
cond ForkReady[5]; /* condition variable for synchronization */
boolean fork[5] = {true, ...}; /* availability status of each fork */
void get_forks(int pid) {

int left = pid; int right = (++pid) % 5;
if (!fork(left)) /*grant the left fork*/

cwait(ForkReady[left]); /* queue on condition variable */
fork(left) = false;
if (!fork(right)) /*grant the right fork*/

cwait(ForkReady(right)); /* queue on condition variable */
fork(right) = false:

}
void release_forks(int pid) {

int left = pid; int right = (++pid) % 5;
if (empty(ForkReady[left])) /*no one is waiting for this fork */

fork(left) = true; /*release the left fork*/
else /* awaken a process waiting on this fork */

csignal(ForkReady[left]);
if (empty(ForkReady[right])) /*no one is waiting for this fork */

fork(right) = true; /*release the right fork*/
else /* awaken a process waiting on this fork */

csignal(ForkReady[right]);
}

CS 409, FALL 2013 DEADLOCK AND STARVATION/21

DINING PHILOSOPHERS WITH A SEMAPHORE (CONT’D)

void philosopher[k=0 to 4] /* the five philosopher clients */
{

while (true) {
<think>;
get_forks(k); /* client requests two forks via monitor */
<eat spaghetti>;
release_forks(k); /* client releases forks via the monitor */

}
}

CS 409, FALL 2013 DEADLOCK AND STARVATION/22

MOST COMMON OS APPROACH TO DEADLOCK

Ignore the problem and pretend that deadlocks
never occur in the system!

CS 409, FALL 2013 DEADLOCK AND STARVATION/23

MOST COMMON OS APPROACH TO DEADLOCK

Ignore the problem and pretend that deadlocks
never occur in the system!

CS 409, FALL 2013 DEADLOCK AND STARVATION/23

UNIX CONCURRENCY MECHANISMS

• Pipes: FIFO queues, implement the producer/consumer model
• Messages: msgsnd and msgrcv system calls with one message queue for each

process
• Signals: primitive messages, used for signaling special conditions
• Shared memory:

– Creation: id = shmget(IPC_PRIVATE, size, S_IRUSR|S_IWUSR);
– Attach: shared_memory = (char *) shmat(id, NULL, 0);
– Use: like a normal buffer (array)
– Detach shared memory from own address space: shmdt(shared_memory);
– Mutual exclusion constraints are not part of the shared-memory facility but must

be provided by the processes using the shared memory

• Semaphores: for mutual exclusion (as usual)

CS 409, FALL 2013 DEADLOCK AND STARVATION/24

LINUX KERNEL CONCURRENCY MECHANISMS

• Atomic Operations: simplest approach to synchronization

– Two types: integer operations (typical use: counters) and bitmap operations

• Spinlocks: most common technique for protecting a critical section in Linux

– Integer location checked by each thread before it enters its critical section
– Can only be acquired by one thread at a time; the others will keep trying (spin-

ning) until they can acquire the lock
– Effective whenever the wait time for acquiring a lock is expected to be very short
– Disadvantage: busy-waiting

• Semaphores: binary, counting, readers/writers
• Barriers: enforce the order in which instructions are executed

– rmb() - prevents loads from being reordered across the barrier
– wmb() - prevents stores from being reordered across the barrier
– mb() - prevents both from being reordered across the barrier
– etc.

CS 409, FALL 2013 DEADLOCK AND STARVATION/25

LINUX ATOMIC OPERATIONS

Atomic integer operations
ATOMIC_INIT (int i) At declaration: initialize an atomic_t to i
int atomic_read(atomic_t *v) Read integer value of v
void atomic_set(atomic_t *v, int i) Set the value of v to integer i
void atomic_add(int i, atomic_t *v) Add i to v
void atomic_sub(int i, atomic_t *v) Subtract i from v
void atomic_inc(atomic_t *v) Add 1 to v
void atomic_dec(atomic_t *v) Subtract 1 from v
int atomic_sub_and_test(int i, atomic_t *v) Subtract i from v; return 1 if the result is

zero; return 0 otherwise
int atomic_add_negative(int i, atomic_t *v) Add i to v; return 1 if the result is negative;

return 0 otherwise (used for semaphores)
int atomic_dec_and_test(atomic_t *v) Subtract 1 from v; return 1 if the result is

zero; return 0 otherwise
int atomic_inc_and_test(atomic_t *v) Add 1 to v; return 1 if the result is zero;

return 0 otherwise
Atomic bitmap operations

void set_bit(int nr, void *addr) Set bit nr in the bitmap addr
void clear_bit(int nr, void *addr) Clear bit nr in the bitmap addr
void change_bit(int nr, void *addr) Invert bit nr
int test_and_set_bit(int nr, void *addr) Set bit nr and return the old bit value
int test_and_clear_bit(int nr, void *addr) Clear bit nr and return the old bit value
int test_and_change_bit(int nr, void *addr) Invert bit nr and return the old bit value
int test_bit(int nr, void *addr) Return the value of bit nr

CS 409, FALL 2013 DEADLOCK AND STARVATION/26

LINUX SPINLOCKS

• void spin_lock(spinlock_t *lock): acquires the specified lock, spinning if needed until it is
available

• void spin_lock_irq(spinlock_t *lock): also disables interrupts on the local processor

• void spin_lock_irqsave(spinlock_t *lock, unsigned long flags): also saves the
current interrupt state in flags

• void spin_unlock(spinlock_t *lock): releases given lock

• void spin_unlock_irq(spinlock_t *lock): releases given lock and enables local interrupts

• void spin_unlock_irqrestore(spinlock_t *lock, unsigned long flags): releases
given lock and restores local interrupts to given previous state

• void spin_lock_init(spinlock_t *lock): initializes given spinlock

• int spin_trylock(spinlock_t *lock): tries to acquire specified lock; returns nonzero if lock
is currently held and zero otherwise

• int spin_is_locked(spinlock_t *lock): returns nonzero if lock is currently held and zero
otherwise

CS 409, FALL 2013 DEADLOCK AND STARVATION/27

LINUX SEMAPHORES

• Traditional semaphores:

– void sema_init(struct semaphore *sem, int count)
– void init_MUTEX(struct semaphore *sem) (initially unlocked)
– void init_MUTEX_LOCKED(struct semaphore *sem) (initially locked)
– void down(struct semaphore *sem) (and enters uninterruptible sleep if

semaphore is unavailable)
– int down_interruptible(struct semaphore *sem) (interruptible)
– int down_trylock(struct semaphore *sem)
– void up(struct semaphore *sem) (release semaphore)

• Reader-writer semaphores:

– void init_rwsem(struct rw_semaphore, *rwsem)
– void down_read(struct rw_semaphore, *rwsem)
– void up_read(struct rw_semaphore, *rwsem)
– void down_write(struct rw_semaphore, *rwsem)
– void up_write(struct rw_semaphore, *rwsem)

CS 409, FALL 2013 DEADLOCK AND STARVATION/28

