SPLITTING THE CODE BRINGING YOUR PROGRAM TO LIFE

e Sometimes we like to split our program into multiple files (or modules).
for (int i = 0; i < 10; i++) {

o Advantages: encapsulation, reusability, size. ‘ High level code ‘ cout << i << "' << i <<
e . foo.cc .
— We can also reduce compilation time. (declarations
. . for cout ‘Headers }—>(Compiler j ¢
e A module consists in two parts: <<,
— the header file, where all the declarations available outside the module go [Assembly language program | lis 9,cout@ha
(e.g., tecp—util.h) foo.s la 3,cout@l(9)

1wz 4,16(31)

— the C/C++ code which implements the things declared in the header |

(e.g., tecp-util.cc)

‘ Object code ‘ ...01101001010001100. ..
e Another module (say main.cc) that wants to use tcp-util.cc will do (code that foo.o
#include "tcp-util.h" implements |
cout, <<, ...)
— Then tcp-util.cc and main.cc will be compiled and linked together.
P ' ‘ P [¢] ‘ Executable program ‘ ...01110001011101100. ..
+x We use for this purpose a makefile. a.out/foo
CS 409, FALL 2013 WORKING WITH MULTIPLE FILES/1 CS 409, FALL 2013 WORKING WITH MULTIPLE FILES/2
BRINGING YOUR PROGRAM TO LIFE PUTTING MANY MODULES TOGETHER
cee 4]
for (imt i = 0; i < 10; i++) { S ‘ High level cod | \ High level cod |
- cout << i << "' << i << s igh level code igh level code
‘ High level code ‘ " * * "3 tcp-util.cc client.cc g
o foo.cc L‘ +
0 (declarations 9 C iler) [Headers | (c il 4
° for cout ‘Headers }—>(Compiler j ¢ ® [ompler J Lrieaders | . omp| il j |
o << ° tcp-util.h o
s ’ ‘ i | :
. . A bly | A bly | o
&=t ‘Assembly language program ‘ lis 9,cout@ha :5 ssemby anguagfczlf)‘?;alr: < ssemby anguage Tff:r: < &
he \ g++ -S foo.cc foo.s la 3,cout@l(9) Q& B
0 \ lwz 4,16(31) 3 A bl A b °
\ cee ssemboler ssembler
ol 0 o
- \ b
© \ ¢ ? 3
¥ \ ‘ - ‘ N Oblect code Object code o
| Object code ...01101001010001100. .. + tcp-util. o client. o a
I \ g++ —c foo.cc foo.o a
\ (code that
£ | | molemens ’
cout, <<, ...
\\ ‘ Executable program ‘ ...01110001011101100... ‘ Executable program g++ —o triv_client tcp-util.o client.o
" a.out/foo triv client

CS 409, FALL 2013 WORKING WITH MULTIPLE FILES/2 CS 409, FALL 2013 WORKING WITH MULTIPLE FILES/3

MAKEFILES

o A makefile contains recipes for compiling multiple file programs.
o A makefile contains macrodefinitions, e.g.,

this is a comment
CXX = g+t
CXXFLAGS = -g -Wall

e Then we have rules of the form:

target : [sourcel] [source2] [source3]
commandl
command?2
command3

¥ Exactly one TAB on each line here!

— atarget is the name of the file to be produced
= it is produced by executing the corresponding commands
— the sources are the files needed to produce the target (if any)

MAKEFILES (CONT’D)

CS 409, FALL 2013 WORKING WITH MULTIPLE FILES/4

e Sample of rules:
all: triv_client

tcp-utils.o: tcp-utils.h tcp-utils.cc
$(CXX) $(CXXFLAGS) -c -o tcp-utils.o tcp-utils.cc

client.o: tcp-utils.h client.cc
$(CXX) $(CXXFLAGS) -c -o client.o client.cc

triv_client: client.o tcp-utils.o
$(CXX) $(CXXFLAGS) -o triv_client client.o tcp-utils.o

clean:
rm -f triv_client %~ x.0 *.bak core \#+*

e You type make target in some directory d.
— make without arguments produces the first target in the makefile.
e The command looks for a file called Makefile in d and produces the file target.

e All the targets needed by target are also made, unless they are up to date.

CS 409, FALL 2013 WORKING WITH MULTIPLE FILES/5

