
COMPUTING INFRASTRUCTURE

CS 409, FALL 2013 OS OVERVIEW/1

OPERATING SYSTEM

• An OS functions in the same way as ordinary computer software: suite of programs,
executed by the processor

– Frequently relinquishes control and depends on the processor to regain control

• A program that controls the execution of application programs

– Computer = set of resources for the movement, storage, and processing of data
– The OS is responsible for managing these resources

• An interface between applications and hardware

– Program development and then execution
– Access I/O devices, including controlled access to files
– System access
– Error detection and response
– Accounting

• Main objectives of an OS: convenience, efficiency, ability to evolve

CS 409, FALL 2013 OS OVERVIEW/2

OS EVOLUTION

Serial Processing −→ Batch Processing −→ Multitasking −→ Time Sharing

• Earliest computers = serial processing

– No OS – programmers interact directly with the computer hardware
– Users have access to the computer in series
– Scheduling: sign-up sheet (hardcopy!), wasted (computer and human) time
– Considerable setup time

• Simple batch systems = jobs submitted to an operator who batches them and feed
them to a computer

– Uses a monitor to control the sequence of events
– The resident monitor (always in memory) reads in job and gives control to them
– Job returns control to monitor once finished
– Sacrifices memory and CPU time (to the monitor), but nonetheless improves the

utilization of the computer

CS 409, FALL 2013 OS OVERVIEW/3

BATCH SYSTEMS (CONT’D)

• Special programming language to provide instructions to the monitor: job control
language (JCL) (what compiler and what data to use, etc.)

• Needed hardware features:

– Memory protection for monitor (user program must not alter the memory area
containing the monitor)

– Timer (prevents a job from monopolizing the system)
– Privileged instructions (can only be executed by the monitor)
– Interrupts (more flexibility in controlling user programs)

• User mode for user programs

– Certain areas of memory are protected from user access
– Certain instructions may not be executed

• Kernel mode for the monitor

– Privileged instructions may be executed
– Protected areas of memory may be accessed

CS 409, FALL 2013 OS OVERVIEW/4



MULTITASKING (MULTIPROGRAMMING)

• Batch jobs execute one after another

– The processor simply waits whenever I/O happens = processor is mostly idle

• If we have more than one program in memory we can simply run the others while
one waits for I/O −→ multitasking

CS 409, FALL 2013 OS OVERVIEW/5

TIME-SHARING SYSTEMS

• Handle multiple (interactive) jobs and multiple users

– Processor time is shared among multiple users and jobs
– Multiple users access simultaneously the system through terminals, with the OS

interleaving the execution of each user program in a short burst or quantum of
computation

Batch multitasking Time sharing
Principal objective Maximize CPU use Maximize response time
Source of directives JCL commands Terminal commands
to the OS (provided with the job) (interactive)

• Early time-sharing OS: Compatible Time-Sharing Systems or CTSS (MIT, 1961)

– System clock generates interrupts approximately every 0.2 seconds
– At each interrupt OS regains control and can assign CPU to another user
– At regular intervals the current user is preempted and another user is loaded
– Old user code and data are written out to disk
– Code and data is restored in memory when that program is next given a turn

CS 409, FALL 2013 OS OVERVIEW/6

THE REST IS HISTORY

• Operating Systems are among the most complex pieces of software ever developed
• Major advances in development include:

– Processes
– Memory management
– Information protection and security
– Scheduling and resource management
– System structure

CS 409, FALL 2013 OS OVERVIEW/7

A USER PERSPECTIVE: SYSTEM CALLS

Operating system
(including TCP/IP software)

Operating system
(including TCP/IP software)

Application 4 Application 5Application 1 Application 3

Application 2

Network

Machine 1 Machine 2

API (system functions) API (system functions)

CS 409, FALL 2013 OS OVERVIEW/8



SYSTEM CALLS (CONT’D)

• Programming interface to the services provided by the OS, forms an Application
Binary Interface (ABI)

• Typically written in a C-like language (C, C++, Objective-C)
• Accessed by programmers via an Application Programming Interface (API)
• Most common APIs: Win32 (Windows), POSIX (virtually all versions of UNIX, Linux,

and Mac OS X), Java (Java VM)
• In Unix, the description of all the API calls are in Section 2 of the manual pages:
man -S2 write

– Some other, useful functions found in Section 3 (Standard C library but not OS-
related): man -S3 printf

• interesting APIs: processes, terminal I/O, file I/O, networking (or Berkeley sockets)

CS 409, FALL 2013 OS OVERVIEW/9

API EXAMPLE: FILE I/O

Operation Meaning
open prepares a file for I/O operations

returns a file descriptor (int) used by all the other operations
close terminates the use of a previously opened file/device
read obtain data from a file/device
write write data to a file/device
lseek move to some position in the file/device

(not applicable to all devices)

• For example,

char result[256];
int file = open("echo",O_RDONLY);
if (file == -1)
return 1;

read(file,result,255);
close(file);

CS 409, FALL 2013 OS OVERVIEW/10

FILE I/O (CONT’D)
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <string.h>
#include <stdio.h>
#include <unistd.h>

int main (int argc, char** argv) {
int file = open(argv[1], O_WRONLY|O_CREAT|O_APPEND, S_IRUSR|S_IWUSR);
int i = 0; char prefix[12]; char message[256] = "something";
if (file == -1) return 1;
while (true) {
i++;
printf("Message: ");
fgets(message,255,stdin);
if (message[strlen(message)-1] == ’\n’) message[strlen(message)-1] == ’\0’;
if (strlen(message) == 0) break;
snprintf(prefix, 12, "%d: ", i);
write(file, prefix, strlen(prefix));
write(file, message, strlen(message));
write(file, "\n", 1);

}
close(file);

}

CS 409, FALL 2013 OS OVERVIEW/11

TEXT FILES

int readline(int fd, char* buf_str, size_t max) {
size_t i;
for (i = 0; i < max; i++) {
char tmp;
int what = read(fd,&tmp,1);
if (what == 0 || tmp == ’\n’) {

buf_str[i] = ’\0’;
return i;

}
buf_str[i] = tmp;

}
buf_str[i] = ’\0’;
return i;

}

int dbf = open("myfile",O_RDONLY);
if (dbf == -1) {
perror(myfile);
exit(1);

}
char message[256];
int nc = readline(dbf,message,255);

CS 409, FALL 2013 OS OVERVIEW/12



TEXT FILES (CONT’D)
const int recv_nodata = -2;

int readline(const int fd, char* buf, const size_t max) {
size_t i; int begin = 1;

for (i = 0; i < max; i++) {
char tmp;
int what = read(fd,&tmp,1);
if (what == -1) return -1;
if (begin) {

if (what == 0)
return recv_nodata;

begin = 0;
}
if (what == 0 || tmp == ’\n’) {

buf[i] = ’\0’;
return i;

}
buf[i] = tmp;

}
buf[i] = ’\0’;
return i;

}

CS 409, FALL 2013 OS OVERVIEW/13

FILE DESCRIPTORS

data structure for file
0 (stdin)

data structure for file
1 (stdout)

data structure for file
2 (stderr)

data structure for file
n ("myfile")

int dbf = open("myfile",O_RDONLY);

0:
1:
2:

n:

(one per process)
Descriptor table

CS 409, FALL 2013 OS OVERVIEW/14

SYSTEM CALL IMPLEMENTATION

• Typically, a number (index) is associ-
ated with each system call

– The system-call interface main-
tains a table indexed according to
these numbers

• The system call interface invokes in-
tended system call in kernel and re-
turns status and any return values
upon completion

• The caller need know nothing about
how the system call is implemented

– Details of OS interface hidden
from programmer, managed by
run-time libraries

CS 409, FALL 2013 OS OVERVIEW/15

SYSTEM CALL IMPLEMENTATION (CONT’D)

• Often, more information is required than simply identity of desired system call (pa-
rameters); how to pass that data?

– Pass the parameters in registers (but what if we have more parameters than
registers??)

– Parameters stored in a block or table in memory, address of block passed as a
parameter in a register (Linux, Solaris)

– Parameters pushed on the stack by the program and popped off by the OS

CS 409, FALL 2013 OS OVERVIEW/16



OTHER FUNCTIONS IN THE STANDARD C LIBRARY

• C program calls: printf()
(library call)

• printf() in turn will call
write() (system call)

CS 409, FALL 2013 OS OVERVIEW/17

EVEN MORE WRAPPERS: SYSTEM PROGRAMS

• Provide a convenient environment for program development and execution

– File manipulation
– Status information
– Programming language support
– Program loading and execution
– Communication

• Most users’ view of the operation system is defined by system programs, not the
actual system calls

• Some are simply interfaces to system calls; others are considerably more complex
• Example: File management: ls, cp, mv, rm, cat, more, . . .
• Example: Status information

– Some commands ask the system for info - date, time, amount of available mem-
ory, . . .

– Others provide detailed performance, logging, and debugging information

CS 409, FALL 2013 OS OVERVIEW/18

OS OVERVIEW: PROCESSES

• Processes are fundamental to the structure of operating systems
• A process is defined as:

– A program in execution
– An instance of a running program
– The entity that can be assigned to, and executed on, a processor
– A unit of activity characterized by a single sequential thread of execution, a cur-

rent state, and an associated set of system resources

• Concept refined by various issues found in three major lines of computer system
development

– multitasking batch operation (processor is switched among the various programs
residing in main memory)

– time sharing (be responsive to the individual user but be able to support many
users simultaneously)

– real-time transaction systems (a number of users are entering queries or up-
dates against a database)

CS 409, FALL 2013 OS OVERVIEW/19

OS OVERVIEW: PROCESSES

• Processes are fundamental to the structure of operating systems
• A process is defined as:

– A program in execution
– An instance of a running program
– The entity that can be assigned to, and executed on, a processor
– A unit of activity characterized by a single sequential thread of execution, a cur-

rent state, and an associated set of system resources

• Concept refined by various issues found in three major lines of computer system
development

– multitasking batch operation (processor is switched among the various programs
residing in main memory)

– time sharing (be responsive to the individual user but be able to support many
users simultaneously)

– real-time transaction systems (a number of users are entering queries or up-
dates against a database)

CS 409, FALL 2013 OS OVERVIEW/19



OS OVERVIEW: PROCESSES

• Processes are fundamental to the structure of operating systems
• A process is defined as:

– A program in execution
– An instance of a running program
– The entity that can be assigned to, and executed on, a processor
– A unit of activity characterized by a single sequential thread of execution, a cur-

rent state, and an associated set of system resources

• Concept refined by various issues found in three major lines of computer system
development

– multitasking batch operation (processor is switched among the various programs
residing in main memory)

– time sharing (be responsive to the individual user but be able to support many
users simultaneously)

– real-time transaction systems (a number of users are entering queries or up-
dates against a database)

CS 409, FALL 2013 OS OVERVIEW/19

OS OVERVIEW: PROCESSES

• Processes are fundamental to the structure of operating systems
• A process is defined as:

– A program in execution
– An instance of a running program
– The entity that can be assigned to, and executed on, a processor
– A unit of activity characterized by a single sequential thread of execution, a cur-

rent state, and an associated set of system resources

• Concept refined by various issues found in three major lines of computer system
development

– multitasking batch operation (processor is switched among the various programs
residing in main memory)

– time sharing (be responsive to the individual user but be able to support many
users simultaneously)

– real-time transaction systems (a number of users are entering queries or up-
dates against a database)

CS 409, FALL 2013 OS OVERVIEW/19

PROCESSES ARE TRICKY

A multi-process environment can fail in new, wonderful ways

• Improper synchronization

– a program must wait until the data are available in a buffer
– improper design of the signaling mechanism can result in loss or duplication

• Failed mutual exclusion

– many users or programs attempt to use a shared resource at the same time
– only one routine at at time allowed can manipulate the resource

• Nondeterminate program operation

– program execution is interleaved by the processor
– the order in which programs are scheduled may affect their outcome

• Deadlocks

– it is possible for two or more programs to be hung up waiting for each other
– may depend on the chance timing of resource allocation and release

CS 409, FALL 2013 OS OVERVIEW/20

PROCESS COMPONENTS

• An executable program
• The associated data needed by the program (variables, work space, buffers, etc.)
• The execution context (or process state) of the program

– Essential resources in time-sharing systems
– It is the internal data by which the OS is able to supervise and control the process
– Includes the contents of the various process registers
– Includes information such as the priority of the process and whether the process

is waiting for the completion of a particular I/O event
– The entire state of the process at any instant is contained in its context
– New features can be designed and incorporated into the OS by expanding the

context to include any new information needed to support the feature

CS 409, FALL 2013 OS OVERVIEW/21



MULTITHREADING

• Thread = dispatchable unit of work

– Includes a processor context and its own data area to enable subroutine branch-
ing

– Executes sequentially and is interruptible

• Process = a collection of one or more threads and associated system resources

– A unit of activity characterized by a single sequential thread of execution, a cur-
rent state, and an associated set of system resources

– Programmer has greater control over the modularity of the application and the
timing of application related events

CS 409, FALL 2013 OS OVERVIEW/22

MEMORY MANAGEMENT SOLUTIONS

• The OS has five principal storage management responsibilities:
Process isolation Automatic allocation and management
Support for modular programming Protection and access control
Long-term storage

• Virtual memory

– A facility that allows programs to address memory from a logical point of view,
without regard to the amount of main memory physically available

– Conceived to meet the requirement of having multiple user jobs reside in main
memory concurrently

• Paging

– Allows processes to be comprised of a number of fixed-size blocks, called pages
– Program references a word by means of a virtual address = page number +

offset within the page (each page may be located anywhere in main memory)
– Provides for a dynamic mapping between the virtual address used in the pro-

gram and a real (or physical) address in main memory

CS 409, FALL 2013 OS OVERVIEW/23

VIRTUAL MEMORY

CS 409, FALL 2013 OS OVERVIEW/24

RESOURCE MANAGEMENT

• Key responsibility of an OS is managing resources
• Allocation policies must consider efficiency, fairness, differential responsiveness
• On top of all of this one must consider information protection and security

– Main issues: availability, authenticity, data integrity, confidentiality
– The nature of the threat that concerns an organization will vary greatly depend-

ing on the circumstances
– The problem involves controlling access to computer systems and the informa-

tion stored in them
– No perfect solution!

CS 409, FALL 2013 OS OVERVIEW/25



ARCHITECTURAL APPROACHES

• Monolithic kernel versus microkernel
• Symmetric multiprocessing

– Multi-core processing

• Distributed OS

– Provides the illusion of a single main memory space, single secondary memory
space, unified access facilities

• Modular design

– Used for adding modular extensions to a kernel
– Enables programmers to customize an operating system without disrupting sys-

tem integrity
– Eases the development of distributed tools and full-blown distributed operating

systems

• Virtualization – “host” operating system can support a number of virtual machines

CS 409, FALL 2013 OS OVERVIEW/26

VIRTUALIZATION

CS 409, FALL 2013 OS OVERVIEW/27

PROCESS VIRTUAL MACHINE

CS 409, FALL 2013 OS OVERVIEW/28

SYSTEM VIRTUAL MACHINE

CS 409, FALL 2013 OS OVERVIEW/29



TRADITIONAL UNIX

• Developed at Bell Labs and became
operational on a PDP-7 in 1970

– PDP-11 was then a milestone be-
cause it first showed that UNIX
would be an OS for all computers

• Next milestone was rewriting UNIX in
the programming language C

– Demonstrated the advantages of
using a high-level language for sys-
tem code

• Was described in a technical journal for
the first time in 1974

• First widely available version outside
Bell Labs was Version 6 (1976)

• Version 7 (1978) is the ancestor of most
modern UNIX systems

• Most important of the non-AT&T sys-
tems was UNIX BSD (Berkeley Soft-
ware Distribution)

CS 409, FALL 2013 OS OVERVIEW/30

TRADITIONAL UNIX KERNEL

CS 409, FALL 2013 OS OVERVIEW/31

MODERN UNIX KERNEL

CS 409, FALL 2013 OS OVERVIEW/32

LINUX

• Started out as a UNIX variant for the IBM PC; today a full-featured UNIX system that
runs on several platforms

• Linus Torvalds wrote the initial version; first posted on the Internet in 1991
• Is free and the source code is available
• Highly modular and easily configured
• Modular, monolithic kernel

– Includes virtually all of the OS functionality in one large block of code that runs
as a single process with a single address space

– All the components have access to all of its internal data and routines
– Structured as a collection of modules

• Loadable modules

– Relatively independent block, an object file whose code can be linked to and
unlinked from the kernel at run time

– Executed in kernel mode on behalf of the current process

CS 409, FALL 2013 OS OVERVIEW/33



LINUX KERNEL COMPONENTS

CS 409, FALL 2013 OS OVERVIEW/34


