
PROCESSES AND THREADS

• Process characteristics:

– Resource Ownership (virtual address space including the process image)
∗ the OS performs a protection function to prevent unwanted interference be-

tween processes with respect to resources
– Scheduling/Execution (follows an execution path that may be interleaved with

other processes)
∗ a process has an execution state (Running, Ready, etc.) and a dispatching

priority and is scheduled and dispatched by the OS
∗ Can be separated from resource ownership

• The unit of dispatching is referred to as a thread or lightweight process
• The unit of resource ownership is referred to as a process or task
• Multithreading = The ability of an OS to support multiple, concurrent paths of execu-

tion within a single process

CS 409, FALL 2013 PROCESSES AND THREADS/1

PROCESS/THREAD APPROACHES

• Example: DOS (“single-threaded”), Java VM (single process, multiple threads)

CS 409, FALL 2013 PROCESSES AND THREADS/2

THREADS IN PROCESSES

• The process is a unit of resource allocation and resource protection

– A virtual address space that holds the process image
– Protected access to: CPU, other processes, files, I/O resources
– Contains multiple threads of execution

• Each thread has:

– An execution state (Running, Ready, etc.)
– Saved thread context when not running
– An execution stack
– Some per-thread static storage for local variables
– Access to memory and resources of a process (shared by all threads in process)

• Thread synchronization

– Necessary to synchronize the activities of the various threads in a process
– All threads of a process share the same address space and other resources
– Alteration of a resource by one thread affects the other threads in the process

CS 409, FALL 2013 PROCESSES AND THREADS/3

THREADS VERSUS PROCESSES

CS 409, FALL 2013 PROCESSES AND THREADS/4

THREADS VS PROCESSES EXAMPLE: NETWORK SERVERS

connect
requests

clients being served

Parent
process

Child
process

Child
process

Child
process

new
clients

master

com
m

unicate

clients being served
new

clients

Child
thread

Child
thread

Child
thread

Parent
thread connect

requests

com
m

unicate

(sole) server process

Repeat forever:
1. Accept connection request, create a new

slave socket s, and fork
2. If children process then

(a) Close master socket
(b) Interact with client through s

3. Otherwise (i.e., if parent process):
(a) Close slave socket

Repeat forever:
1. Accept connection request, create a new

slave socket s, and create new thread
2. In the new thread:

(a) Do not close master socket
(b) Interact with client through s

3. In the main thread:
(a) Do not close slave socket

CS 409, FALL 2013 PROCESSES AND THREADS/5

THREADS

• Benefits of threads

– Takes less time to create a new thread than a process (generally)
– Less time to terminate a thread than a process (generally)
– Switching between two threads takes less time than switching between pro-

cesses (generally)
– Threads enhance efficiency in communication between programs

• In an OS that supports threads, scheduling and dispatching is done on a thread
basis

• Most of the state information dealing with execution is thus maintained in thread-level
data structures

– Suspending a process involves suspending all threads of the process
– Termination of a process terminates all threads within the process
– Key states for a thread: Running, Ready, Blocked
– Thread operations associated to change in state: Spawn, Block, Unblock, Finish

CS 409, FALL 2013 PROCESSES AND THREADS/6

TYPES OF THREADS: USER-LEVEL THREADS

• User-level threads (ULT) - all thread manage-
ment done by the application

• Kernel is not aware of the existence of threads
• Advantages:

– Thread switching does not require kernel
mode privileges

– Scheduling can be application specific
– Can run on any OS

• Disadvantages:
– Many system calls are blocking ⇒ when a

ULT execute a system call all the threads
are blocked
(Possible solution: jacketing = converts a
blocking system call into a non-blocking
system call – library level)

– A pure ULT application cannot take advan-
tage of multiprocessing
(Possible solution: write a multi-process ap-
plication)

CS 409, FALL 2013 PROCESSES AND THREADS/7

ULT AND PROCESS STATES

CS 409, FALL 2013 PROCESSES AND THREADS/8

TYPES OF THREADS: KERNEL-LEVEL THREADS

• Kernel-level threads (KLT) - all thread manage-
ment done by the kernel (application not in-
volved)

• Advantages:
– The kernel can simultaneously schedule

multiple threads from the same process on
multiple processors

– If one thread in a process is blocked, the
kernel can schedule another thread of the
same process

– Kernel routines can be multithreaded
• Disadvantages:

– The transfer of control from one thread to
another within the same process requires
a mode switch to the kernel (usually more
expensive)

• Example: Windows

CS 409, FALL 2013 PROCESSES AND THREADS/9

TYPES OF THREADS: COMBINED APPROACHES

• Thread creation done in user space
• Bulk of scheduling and synchronization of

threads done by the application
• Example: Solaris

Relationships between thread and processes:
• 1:1 - each thread of execution is a unique pro-

cess with its own address space and resources
(traditional Unix)

• M:1 - a process defines an address space and
dynamic resource ownership; multiple threads
may be created and executed within that pro-
cess (Windows NT, Linux, Mach, etc.)

• 1:M - a thread may migrate from one process
environment to another; this allows a thread
to be easily moved among distinct systems
(clouds, Ra, Emerald)

• M:N - combines attributes of M:1 and 1:M cases
(TRIX)

CS 409, FALL 2013 PROCESSES AND THREADS/10

THREAD ISSUES

• Semantics of fork() and exec() system calls

– Does fork() duplicate only the calling thread or all threads?

• Signal handling in multi-threaded processes

– Deliver the signal to the thread to which the signal applies
– Deliver the signal to every thread in the process
– Deliver the signal to certain threads in the process
– Assign a specific thread to receive all signals for the process

• Symmetric multiprocessing issues

– Threads of any process can run on any processor
– Sometimes it is advantageous to be more precise

∗ E.g., Windows allow to specify soft affinity (the dispatcher tries to assign a
ready thread to the same processor it last ran on) or hard affinity (restricts
thread execution to certain processors)

∗ Soft affinity helps reuse data still in that processor’s memory caches from the
previous execution of the thread

CS 409, FALL 2013 PROCESSES AND THREADS/11

SOLARIS THREADS

• Process – includes the user’s address space, stack, and process control block
• User-level Threads – a user-created unit of execution within a process
• Lightweight Processes (LWP) – a mapping between ULTs and kernel threads
• Kernel Threads – fundamental entities that can be scheduled and dispatched to run

on one of the system processors

CS 409, FALL 2013 PROCESSES AND THREADS/12

TRADITIONAL UNIX VERSUS SOLARIS

CS 409, FALL 2013 PROCESSES AND THREADS/13

SOLARIS THREAD STATES

CS 409, FALL 2013 PROCESSES AND THREADS/14

INTERRUPTS AS THREADS

• Most operating systems contain two fundamental forms of concurrent activity:

– Processes or threads = data manipulation workhorses
– Interrupts = asynchronous conditions that need attention

• Solaris solution:

– Set of kernel threads handle interrupts
– An interrupt thread has its own identifier, priority, context, and stack
– The kernel controls access to data structures and synchronizes among interrupt

threads using mutual exclusion primitives
– Interrupt threads are assigned higher priorities than all other types of kernel

threads

CS 409, FALL 2013 PROCESSES AND THREADS/15

LINUX TASKS

• A process, or task, in
Linux is represented by a
task_struct data structure

• No distinction in kernel be-
tween threads and processes

– ULT mapped into kernel-
level processes

– A new process is created
by copying all attributes
of the current process

– The process can also be
cloned so that it shares
resources
∗ The clone() system

call creates separate
stack spaces for each
process

CS 409, FALL 2013 PROCESSES AND THREADS/16

LINUX CLONE() FLAGS

CLONE CLEARID Clear the task ID
CLONE DETACHED The parent does not want a SIGCHLD signal sent on exit
CLONE FILES Shares the table that identifies the open files
CLONE FS Shares the table that identifies the root directory and the current working

directory, as well as the value of the bit mask used to mask the initial file
permissions of a new file

CLONE IDLETASK Set PID to zero, which refers to an idle task. The idle task is employed when
all available tasks are blocked waiting for resources

CLONE NEWNS Create a new namespace for the child
CLONE PARENT Caller and new task share the same parent process
CLONE PTRACE If the parent process is being traced, the child process will also be traced
CLONE SETTID Write the TID back to user space
CLONE SETTLS Create a new TLS for the child
CLONE SIGHAND Shares the table that identifies the signal handlers
CLONE SYSVSEM Shares System V SEM UNDO semantics
CLONE THREAD Inserts this process into the same thread group of the parent. If this flag is

true, it implicitly enforces CLONE PARENT
CLONE VFORK If set, the parent does not get scheduled for execution until the child invokes

the execve() system call
CLONE VM Shares the address space (memory descriptor and all page tables)

CS 409, FALL 2013 PROCESSES AND THREADS/17

MAC OS X GRAND CENTRAL DISPATCH

• Provides a pool of available threads
• The developer designates portions of applications, called blocks, that can be dis-

patched independently and run concurrently

– A simple extension to any programming language
– A block defines a self-contained unit of work
– Enables the programmer to encapsulate complex functions
– Scheduled and dispatched by queues (first-in-first-out basis)
– Can be associated with an event source such as a timer, network socket, or file

descriptor

• Concurrency is based on the number of cores available as well as the thread capacity
of the system

CS 409, FALL 2013 PROCESSES AND THREADS/18

POSIX THREADS

• POSIX standard 1003.1, observed by most other Unix systems
• Characteristics

– Threads can be created at any time using the system call pthread_create
– Threads execute concurrently, and are preemptible

∗ A thread can give up the CPU voluntarily by using the system call
sched_yield (also available for processes)

– Each thread has its own copy of local variables, but all threads in a process
share global variables and the descriptor table

– The threads API include functions for coordination and synchronization (includ-
ing mechanisms to implement critical regions in memory, i.e., without file locks).

– No mention in the standard whether the threads are user- or kernel-level

• A program that uses threads must include <pthread.h> and must be linked with
the library pthread, i.e.,

g++ -lpthread -o foo foo.cc
g++ -lpthread -o tserv tserv.o tcp-utils.o

CS 409, FALL 2013 PROCESSES AND THREADS/19

COORDINATION AND SYNCHRONIZATION

• When working with processes, you need to wory about exclussive access only when
accessing files and other such resources

• When using threads, global variables are also shared, so we wory in general about
any kind of global resources

• The following mechanisms for coordination and synchronization are available:

Mutex: Used to provide exclusive access to a shared piece of data.
– More generally, you can use a mutex to implement a critical region

Operation System call
Initialization pthread_mutex_init
Enter critical region pthread_mutex_lock
Release critical region pthread_mutex_unlock
Test for availability pthread_mutex_trylock

CS 409, FALL 2013 PROCESSES AND THREADS/20

COORDINATION AND SYNCHRONIZATION (CONT’D)

(Counting) semaphore. Like a mutex, but for n copies of the resource
Instead of: Use:
pthread_mutex_init sem_init
pthread_mutex_lock sem_wait
pthread_mutex_unlock sem_post
pthread_mutex_trylock sem_trywait

sem_getvalue

• Include <semaphore.h> to work with semaphores

Condition variable = mutex + condition

• A number of threads need to access a critical region (mutex)
• Once the critical region is acquired, a certain condition has to be met before

going any further
• While it waits for the condition, a thread gives up the mutex so that other threads

may proceed

CS 409, FALL 2013 PROCESSES AND THREADS/21

CONDITION VARIABLE (EXAMPLE)

• Wait till x gets larger than y:

pthread_mutex_t mut = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

pthread_mutex_lock(&mut);
while (x <= y) {
pthread_cond_wait(&cond, &mut); /* mut is released while waiting */

}
/* mut is reacquired */
/* do stuff with x and y */
pthread_mutex_unlock(&mut);

• When x becomes larger than y, the corresponding condition should be signalled:

pthread_mutex_lock(&mut);
/* code that changes x and y */
if (x > y) pthread_cond_broadcast(&cond);
pthread_mutex_unlock(&mut);

CS 409, FALL 2013 PROCESSES AND THREADS/22

CODING EXAMPLES: MUTEX

#include <pthread.h>

// lock1, lock2 MUST be global
pthread_mutex_t lock1;
pthread_mutex_t lock2;

pthread_mutex_init(&lock1,NULL);
pthread_mutex_init(&lock2,NULL);

// Do something involving two critical regions, i.e. use
// pthread_mutex_lock(&lock1) pthread_mutex_unlock(&lock1)
// pthread_mutex_lock(&lock2) pthread_mutex_unlock(&lock2)

// clean up: could call pthread_mutex_destroy
// except that it does nothing

CS 409, FALL 2013 PROCESSES AND THREADS/23

CODING EXAMPLES: MUTEX AND THREADS

pthread_mutex_t lock1, lock2;

void* do_lock (int n) {
pthread_mutex_lock(&lock1);
cout << "Thread " << n << " enters critical.\n";
sched_yield(); sleep(3);
pthread_mutex_unlock(&lock1);
cout << "Thread " << n << " exits critical.\n";
return NULL;

}
int main () {
pthread_mutex_init(&lock1,NULL); pthread_mutex_init(&lock2,NULL);

pthread_t tt;
pthread_attr_t ta;
pthread_attr_init(&ta);
pthread_attr_setdetachstate(&ta,PTHREAD_CREATE_DETACHED);

pthread_create(&tt, &ta, (void* (*) (void*))do_lock, (void*)1);
pthread_create(&tt, &ta, (void* (*) (void*))do_lock, (void*)2);
pthread_create(&tt, &ta, (void* (*) (void*))do_lock, (void*)3);
sched_yield(); sleep(60);

}

CS 409, FALL 2013 PROCESSES AND THREADS/24

MUTEX AND DEADLOCKS

void* do_lock_21 (int n) { void* do_lock_12 (int n) {
pthread_mutex_lock(&lock2); pthread_mutex_lock(&lock1);
cout<<"Th. "<<n<<" enters 1.\n"; cout<<"Th. "<<n<<" enters 1.\n";
sched_yield(); sleep(1); sched_yield(); sleep(1);
pthread_mutex_lock(&lock1); pthread_mutex_lock(&lock2);
cout<<"Th. "<<n<<" enters 2.\n"; cout<<"Th. "<<n<<" enters 2.\n";
sched_yield(); sleep(3); sched_yield(); sleep(3);
pthread_mutex_unlock(&lock2); pthread_mutex_unlock(&lock2);
cout<<"Th. "<<n<<" exits 2.\n"; cout<<"Th. "<<n<<" exits 2.\n";
pthread_mutex_unlock(&lock1); pthread_mutex_unlock(&lock1);
cout<<"Th. "<<n<<" exits 1.\n"; cout<<"Th. "<<n<<" exits 1.\n";
return NULL; return NULL;

} }

int main () {
[... initialize mutexes, thread data ...]

pthread_create(&tt, &ta,
(void* (*) (void*))do_lock_12, (void*)1);

pthread_create(&tt, &ta,
(void* (*) (void*))do_lock_21, (void*)2);

sched_yield(); sleep(60);
}

Output:
Th. 1 enters 1.
Th. 2 enters 1.
. . . nothing happens
. . . in the next
. . . minute!

CS 409, FALL 2013 PROCESSES AND THREADS/25

MUTEX AND DEADLOCKS

void* do_lock_21 (int n) { void* do_lock_12 (int n) {
pthread_mutex_lock(&lock2); pthread_mutex_lock(&lock1);
cout<<"Th. "<<n<<" enters 1.\n"; cout<<"Th. "<<n<<" enters 1.\n";
sched_yield(); sleep(1); sched_yield(); sleep(1);
pthread_mutex_lock(&lock1); pthread_mutex_lock(&lock2);
cout<<"Th. "<<n<<" enters 2.\n"; cout<<"Th. "<<n<<" enters 2.\n";
sched_yield(); sleep(3); sched_yield(); sleep(3);
pthread_mutex_unlock(&lock2); pthread_mutex_unlock(&lock2);
cout<<"Th. "<<n<<" exits 2.\n"; cout<<"Th. "<<n<<" exits 2.\n";
pthread_mutex_unlock(&lock1); pthread_mutex_unlock(&lock1);
cout<<"Th. "<<n<<" exits 1.\n"; cout<<"Th. "<<n<<" exits 1.\n";
return NULL; return NULL;

} }

int main () {
[... initialize mutexes, thread data ...]

pthread_create(&tt, &ta,
(void* (*) (void*))do_lock_12, (void*)1);

pthread_create(&tt, &ta,
(void* (*) (void*))do_lock_21, (void*)2);

sched_yield(); sleep(60);
}

Output:
Th. 1 enters 1.
Th. 2 enters 1.
. . . nothing happens
. . . in the next
. . . minute!

CS 409, FALL 2013 PROCESSES AND THREADS/25

TERMINATING A THREAD

• A thread can terminate itself by returning from its main function of by calling
pthread_exit

• A thread can cancel (i.e., terminate) other threads by sending a cancellation request
using pthread_cancel

– Sole argument: the thread being cancelled (pthread_t)
– Depending on its settings, the target thread can ignore the request, honor it

immediately, or defer it till it reaches a cancellation point
∗ The following POSIX threads functions are cancellation points:
pthread_join, pthread_cond_wait, pthread_cond_timedwait,
pthread_testcancel, sem_wait, sigwait

∗ All other POSIX threads functions are guaranteed not to be cancellation points
∗ pthread_testcancel does nothing except testing for pending cancellation

and executing it
– When the cancellation is honored the thread being cancelled behaves as if it

calls pthread_exit(PTHREAD_CANCELED)

CS 409, FALL 2013 PROCESSES AND THREADS/26

CANCELLATION POINTS

• In addition to the cancellation points enumerated above, a number of system calls
(basically, all system calls that may block) and library functions that may call these
system calls are cancellation points

– according to the POSIX standard that is
– however, older implementations do not conform to this
– workaround:

∗ cancellation requests are transmitted to the target thread by sending it a signal
∗ the signal will interrupt all blocking system calls, causing them to return im-

mediately with the EINTR error
∗ so using pthread_cancel immediately after a system call is safe and

acheives the desired effect
– it is unclear what is the behaviour of newer implementations (feel free to experi-

ment)

CS 409, FALL 2013 PROCESSES AND THREADS/27

CANCELLATION STATE

• pthread_setcancelstate changes the cancellation state for the calling thread

– that is, whether cancellation requests are ignored or not (possible state values:
PTHREAD_CANCEL_DISABLE, PTHREAD_CANCEL_ENABLE)

– the old cancellation state is stored and can thus be restored (unless the second
argument is 0)

– prototype: pthread_setcancelstate(int state, int *oldstate);

• pthread_setcanceltype changes the type of responses to cancellation requests

– possible behaviour: asynchronous (immediate) or deferred cancellation
(PTHREAD_CANCEL_ASYNCHRONOUS, PTHREAD_CANCEL_DEFERRED)

– the old cancellation type is stored and can thus be restored (unless the second
argument is 0)

– prototype: int pthread_setcanceltype(int type, int *oldtype);

• A thread is created by default with cancellation enabled and deferred

CS 409, FALL 2013 PROCESSES AND THREADS/28

JOINING AND DETACHING

• A thread can wait for the completion of other threads:
void* ret;

pthread_create(&tt, ...); ! pthread_join(tt, &ret);

– pthread_join suspends execution of the calling thread until the thread given
as argument terminates

– the return value of the thread (PTHREAD_CANCELED if cancelled) is stored in the
second argument unless the second argument is 0

– At most one thread can wait for the termination of a given thread

• A thread can be waited upon only if it is attached
• However, if a thread is attached it does not deallocate any resources unless a
pthread_join is called on it

– similar with zombie processes
– if you do not want to deal with “zombie threads” then you set them to be de-

tached; otherwise you must call pthread_join on them

CS 409, FALL 2013 PROCESSES AND THREADS/29

