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DETERMINISTIC PUSHDOWN AUTOMATA

α and β are consistent iff α is a prefix of β or the other way around
Two transitions of a PDA ((p,a, β), (q, γ)) and ((p,a′, β′), (q, γ′)) are
compatible iff a and a′ are consistent and β and β′ are consistent; then
A deterministic PDA is a PDA in which no two distinct transitions are
compatible
A language L is deterministic context-free iff L{$} is accepted by a
deterministic PDA

A deterministic PDA is also able to sense the end of the input string
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CLOSURE UNDER COMPLEMENT

Can we just reverse final and non-final states? No!

Indeed, one can construct a PDA that accepts (for example) the language of
balanced parentheses and has a single state; the stack being empty or not
determines whether the run is successful or not at the end

A configuration C = (q,w , α) is a deadend if whenever C `∗ C′ then
C′ = (q′,w , α′) and |α′| ≥ |α|
Consider now a simple deterministic PDA: we can then detect deadends
without running the automaton

We do this by inspecting the current state, next input symbol, and the top of
the stack:
(q, a,A) (viewed as a configuration) is a deadend iff it does not yield (p, ε, α)
or (p, a, ε)

Let D be the set of all deadend configurations
For each (q,a,A) ∈ D we then remove from ∆ all transitions
((q,a,A), (p, β)) and we replace them with the transition ((q,a,A), (r , ε))
(where r is a new, non-final state)
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CLOSURE UNDER COMPLEMENT (CONT’D)

We then add the transitions ((r ,a, ε), (r , ε)) for all a ∈ Σ

We finally add ((r , $, ε), (r ′, ε)) and ((r ′, ε,A), (r ′, ε)) for each A ∈ Γ ∪ {Z}
(r ′ is once more new, non-accepting)
Call this new PDA M ′; it still accepts L{$}
Now we reverse r ′ and f ′ and so obtain M ′ which accepts L{$}

Corollary
Deterministic context-free languages are a strict subset of context-free
languages

When it comes to context-free languages nondeterminism is more powerful
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ALGORITHMS FOR CONTEXT-FREE LANGUAGES

The conversions between a context-free grammar and a pushdown
automata take polynomial time (see the constructions used in the
equivalence proof)
The most practically important problem related to context-free languages
is parsing: Given a grammar G and a string w , to determine whether
w ∈ L(G)
Parsing also takes polynomial time

The top-down parser built in the equivalence proof takes exponential time
However, better house-keeping (and some canonical form of the grammar
similar in spirit with the simple automaton) bring down the complexity to
polynomial
Better house-keeping means a form of dynamic programming
Details for the curious are on pages 151–157

In a real-world compiler polynomial parsing will not do
We want instead to reach the theoretical lower bound for the problem:
linear time = deterministic PDA

Top-down parsing possible in linear time for certain kind of grammars (LL(1))
Need to be able to decide what rule to use based on the next input symbol
Most programming languages have LL(1) grammars, but often they are not
very readable
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BOTTOM-UP PARSING

Bottom-up parsing is slightly more convenient in practice
Starting from G = (V ,Σ,S,R) we construct the automaton
M = ({p, q},Σ,V ,∆, s, {q}) with ∆ containing exactly all the following
transitions:

shift ∀ a ∈ Σ : ((p, a, ε), (p, a))
reduce ∀A→ α ∈ R : ((p, ε, αR), (p,A))
accept ((p, ε,S), (q, ε))

Still nondeterministic:

When to shift and when to reduce?
Establish a precedence relation P ⊆ V × (Σ ∪ {$})
Whenever (stack-top, input) ∈ P we reduce and we shift otherwise

When we reduce, with what rule we reduce?
We use the logest rule = greedy (eat up the longest stack top)

We get deterministic parsing for weak-precedence grammars = most
programming languages
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WEAK-PRECEDENCE GRAMMAR (EXAMPLE)
Grammar

E → E + T

E → T

T → T ∗ F

T → F

F → (E)

F → y

Precedence relation
( ) y + ∗ $

(
) X X X X
y X X X X
+
∗
E
T X X X
F X X X X

Bottom-up parser

((p, a, ε), (p, ε))

((p, ε,T + E), (p,E))

((p, ε,T ), (p,E))

((p, ε,F ∗ T ), (p,T ))

((p, ε,F ), (p,T ))

((p, ε, )E(), (p,F ))

((p, ε, y), (p,F )))
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