CS 455/555: Deterministic context-free languages

Stefan D. Bruda

Fall 2020

DETERMINISTIC PUSHDOWN AUTOMATA

@ « and g are consistent iff « is a prefix of 3 or the other way around

@ Two transitions of a PDA ((p, a, 8),(q,v)) and ((p, &, 3'),(q,7’)) are
compatible iff a and & are consistent and 8 and 8’ are consistent; then

@ A deterministic PDA is a PDA in which no two distinct transitions are
compatible

@ A language L is deterministic context-free iff L{$} is accepted by a
deterministic PDA

@ A deterministic PDA is also able to sense the end of the input string

CS 455/555 (S. D. Bruda) Fall 2020 1/6

CLOSURE UNDER COMPLEMENT

@ Can we just reverse final and non-final states? No!

CS 455/555 (S. D. Bruda) Fall 2020 2/6

CLOSURE UNDER COMPLEMENT

@ Can we just reverse final and non-final states? No!

o Indeed, one can construct a PDA that accepts (for example) the language of
balanced parentheses and has a single state; the stack being empty or not
determines whether the run is successful or not at the end

CS 455/555 (S. D. Bruda) Fall 2020 2/6

CLOSURE UNDER COMPLEMENT

@ Can we just reverse final and non-final states? No!

o Indeed, one can construct a PDA that accepts (for example) the language of
balanced parentheses and has a single state; the stack being empty or not
determines whether the run is successful or not at the end

@ A configuration C = (g, w, «) is a deadend if whenever C -* C’ then
C' =(q,w,d')and |d/| > |of

CS 455/555 (S. D. Bruda) Fall 2020 2/6

CLOSURE UNDER COMPLEMENT

@ Can we just reverse final and non-final states? No!

o Indeed, one can construct a PDA that accepts (for example) the language of
balanced parentheses and has a single state; the stack being empty or not
determines whether the run is successful or not at the end

@ A configuration C = (g, w, «) is a deadend if whenever C -* C’ then
C' =(q,w,d')and |d/| > |of

@ Consider now a simple deterministic PDA: we can then detect deadends
without running the automaton

e We do this by inspecting the current state, next input symbol, and the top of
the stack:
e (g, a,A) (viewed as a configuration) is a deadend iff it does not yield (p, ¢, @)

or (p, a,e)
@ Let D be the set of all deadend configurations
@ For each (g, a, A) € D we then remove from A all transitions
((q, a, A), (p, 5)) and we replace them with the transition ((g, a, A), (r, €))
(where r is a new, non-final state)

CS 455/555 (S. D. Bruda) Fall 2020 2/6

CLOSURE UNDER COMPLEMENT (CONT'D)

@ We then add the transitions ((r, a,), (r,¢)) forallae &

@ We finally add ((r,$,¢),(r,¢)) and ((r',¢,A),(r',e)) foreach Ac T U {Z}
(r' is once more new, non-accepting)

@ Call this new PDA M'; it still accepts L{$}
@ Now we reverse r’ and f' and so obtain M’ which accepts L{$}

CS 455/555 (S. D. Bruda) Fall 2020 3/6

CLOSURE UNDER COMPLEMENT (CONT'D)

@ We then add the transitions ((r, a,), (r,¢)) forallae &

@ We finally add ((r,$,¢),(r,¢)) and ((r',¢,A),(r',e)) foreach Ac T U {Z}
(r' is once more new, non-accepting)

@ Call this new PDA M'; it still accepts L{$}
@ Now we reverse r’ and f' and so obtain M’ which accepts L{$}

Deterministic context-free languages are a strict subset of context-free
languages

o When it comes to context-free languages nondeterminism is more powerful

CS 455/555 (S. D. Bruda) Fall 2020 3/6

ALGORITHMS FOR CONTEXT-FREE LANGUAGES

@ The conversions between a context-free grammar and a pushdown
automata take polynomial time (see the constructions used in the
equivalence proof)

@ The most practically important problem related to context-free languages
is parsing: Given a grammar G and a string w, to determine whether
w e L(G)

@ Parsing also takes polynomial time

o The top-down parser built in the equivalence proof takes exponential time
o However, better house-keeping (and some canonical form of the grammar
similar in spirit with the simple automaton) bring down the complexity to

polynomial
o Better house-keeping means a form of dynamic programming
@ Details for the curious are on pages 151-157

CS 455/555 (S. D. Bruda) Fall 2020 4/6

ALGORITHMS FOR CONTEXT-FREE LANGUAGES

@ The conversions between a context-free grammar and a pushdown
automata take polynomial time (see the constructions used in the
equivalence proof)

@ The most practically important problem related to context-free languages
is parsing: Given a grammar G and a string w, to determine whether
w e L(G)

@ Parsing also takes polynomial time

o The top-down parser built in the equivalence proof takes exponential time
o However, better house-keeping (and some canonical form of the grammar
similar in spirit with the simple automaton) bring down the complexity to

polynomial
o Better house-keeping means a form of dynamic programming
@ Details for the curious are on pages 151-157

@ In a real-world compiler polynomial parsing will not do

@ We want instead to reach the theoretical lower bound for the problem:
linear time = deterministic PDA

e Top-down parsing possible in linear time for certain kind of grammars (LL(1))

o Need to be able to decide what rule to use based on the next input symbol

@ Most programming languages have LL(1) grammars, but often they are not
very readable

CS 455/555 (S. D. Bruda) Fall 2020 4/6

BOTTOM-UP PARSING

@ Bottom-up parsing is slightly more convenient in practice

e Starting from G = (V, X, S, R) we construct the automaton
M= ({p,q},%,V,A, s, {q}) with A containing exactly all the following

transitions:
shift vaex: ((p,ac),(p,a)
reduce VA—=acR: ((p,ea®),(p,A)
accept ((p,e,5),(g,¢))

@ Still nondeterministic:

CS 455/555 (S. D. Bruda) Fall 2020 5/6

BOTTOM-UP PARSING

@ Bottom-up parsing is slightly more convenient in practice

e Starting from G = (V, X, S, R) we construct the automaton
M= ({p,q},%,V,A, s, {q}) with A containing exactly all the following

transitions:
shift vaex: ((p,ac),(p,a)
reduce VA—=acR: ((p,ea®),(p,A)
accept ((p,e,5),(g,¢))

@ Still nondeterministic:
@ When to shift and when to reduce?

@ Establish a precedence relation P C V x (£ U {$})
@ Whenever (stack-top, input) € P we reduce and we shift otherwise

CS 455/555 (S. D. Bruda) Fall 2020 5/6

BOTTOM-UP PARSING

@ Bottom-up parsing is slightly more convenient in practice

e Starting from G = (V, X, S, R) we construct the automaton
M= ({p,q},%,V,A, s, {q}) with A containing exactly all the following

transitions:
shift vaex: ((p,ac),(p,a)
reduce VA—=acR: ((p,ea®),(p,A)
accept ((p,e,5),(g,¢))

@ Still nondeterministic:
@ When to shift and when to reduce?

@ Establish a precedence relation P C V x (£ U {$})
@ Whenever (stack-top, input) € P we reduce and we shift otherwise

@ When we reduce, with what rule we reduce?
@ We use the logest rule = greedy (eat up the longest stack top)
o We get deterministic parsing for weak-precedence grammars = most
programming languages

CS 455/555 (S. D. Bruda) Fall 2020 5/6

@ Grammar

E —
E —
T —
T — F
F —
F —

@ Precedence relation

CS 455/555 (S. D. Bruda)

() v + = '$
(
) v vV
y v < vV
+
3
E
T v v v
F v < v

@ Bottom-up parser

((p; a,e), (p:€))
((p,e, T+ E), (p, E))
((p.e, T), (P, E))
((p,e, F=T),(p, T))
((p.e, F),(p, T))
((p,,)EQ), (p, F))
(P&, y), (P, F)))

Fall 2020

6/6

