
CS 455/555: Turing machines

Stefan D. Bruda

Fall 2020

TURING MACHINES

The most general kind of automaton
Has access to a general form of storage

In fact storage and input are put together
on a single, infinite tape
The machine can move the head in any
direction
Formally, M “ pK ,Σ, δ, s,Hq

S
to

ra
g
e1

2

3

4

...

... ...Input

K , Σ as before; §,# P Σ; L,R R Σ

, Ð, Ñ also common instead of #, L, R

H Ď K (halting states)
often H “ {h}; more convenient that h R K

δ : pK zHq ˆ Σ Ñ K ˆ pΣY {L,R}q such that for all q P K zH:
δpq, §q “ pp, bq implies b “ R
δpq, aq “ pp, bq implies b ‰ §

Configuration: K ˆ Σ˚ ˆ pΣ˚pΣz{#}q Y {ε}q
Configuration pq,wa,w 1q commonly written as pq,waw 1q

CS 455/555 (S. D. Bruda) Fall 2020 1 / 10

TURING MACHINES

The most general kind of automaton
Has access to a general form of storage
In fact storage and input are put together
on a single, infinite tape
The machine can move the head in any
direction
Formally, M “ pK ,Σ, δ, s,Hq

S
to

ra
g
e1

2

3

4

...

... ...Input

K , Σ as before; §,# P Σ; L,R R Σ

, Ð, Ñ also common instead of #, L, R

H Ď K (halting states)
often H “ {h}; more convenient that h R K

δ : pK zHq ˆ Σ Ñ K ˆ pΣY {L,R}q such that for all q P K zH:
δpq, §q “ pp, bq implies b “ R
δpq, aq “ pp, bq implies b ‰ §

Configuration: K ˆ Σ˚ ˆ pΣ˚pΣz{#}q Y {ε}q
Configuration pq,wa,w 1q commonly written as pq,waw 1q

CS 455/555 (S. D. Bruda) Fall 2020 1 / 10

TURING MACHINES (CONT’D)

Yields in one step: pq1,w1a1u1q $M pq2,w2a2u2q iff δpq1,a1q “ pq2,bq for
some b P ΣY {L,R} and either

b P Σ, w1 “ w2, u1 “ u2, a2 “ b,
b “ L, w1 “ w2a2,

u2 “ a1u1 if a1 ‰ # or u1 ‰ ε
u2 “ ε if a1 “ # or u1 “ ε,

b “ R, w2 “ w1a1,
u1 “ a2u2 if a2 ‰ #
u1 “ u2 “ ε if a2 “ #

Yields: $˚M , the reflexive and transitive closure of $M

Yields in n steps: C0 $
n
M Cn iff C0 $M C1 $M ¨ ¨ ¨ $M Cn´1 $M Cn

CS 455/555 (S. D. Bruda) Fall 2020 2 / 10

COMPOSITIONAL NOTATION FOR TURING MACHINES

Basic machines: a : @b P Σ : δps,bq “ ph,aq
L : @b P Σ : δps,bq “ ph,Lq R : @b P Σ : δps,bq “ ph,Rq

Combining machines:
M2

a
Õ

M1
a
Œ

M3

M1 halts and then either M2 or M3 start, depending on whether a is read
(or not) by the head when M1 halts
Supplementary, handy notations:

M Ñ N or just MN for M followed immediately by N
M x“α
ÝÑ Mx

Rx for R ýx; Rx for R ýx; similar for Lx , Lx

CS 455/555 (S. D. Bruda) Fall 2020 3 / 10

SAMPLE MACHINES

ps,#q “ pq2,Lq
pq2, Iq “ pq2,#q
pq2,#q “ pq3,Lq
pq3, Iq “ pq3,Lq
pq3,#q “ pq4, Iq
pq4, Iq “ pq4,Rq
pq4,#q “ ph,#q

More concisely:
ą L#LI IRI

A copy machine: TM accepting {anbncn : n ě 0}:

a
#

a=# R
#
R

L
#

L
#

R
#

> R

#

aL

b

#

Y N

> L
c

d L

d

#

b,a

a,#

c,#

d L

c,d b,d

a
dR

CS 455/555 (S. D. Bruda) Fall 2020 4 / 10

SAMPLE MACHINES

ps,#q “ pq2,Lq
pq2, Iq “ pq2,#q
pq2,#q “ pq3,Lq
pq3, Iq “ pq3,Lq
pq3,#q “ pq4, Iq
pq4, Iq “ pq4,Rq
pq4,#q “ ph,#q

More concisely:
ą L#LI IRI

A copy machine: TM accepting {anbncn : n ě 0}:

a
#

a=# R
#
R

L
#

L
#

R
#

> R

#

aL

b

#

Y N

> L
c

d L

d

#

b,a

a,#

c,#

d L

c,d b,d

a
dR

CS 455/555 (S. D. Bruda) Fall 2020 4 / 10

SAMPLE MACHINES

ps,#q “ pq2,Lq
pq2, Iq “ pq2,#q
pq2,#q “ pq3,Lq
pq3, Iq “ pq3,Lq
pq3,#q “ pq4, Iq
pq4, Iq “ pq4,Rq
pq4,#q “ ph,#q

More concisely:
ą L#LI IRI

A copy machine: TM accepting {anbncn : n ě 0}:

a
#

a=# R
#
R

L
#

L
#

R
#

> R

#

aL

b

#

Y N

> L
c

d L

d

#

b,a

a,#

c,#

d L

c,d b,d

a
dR

CS 455/555 (S. D. Bruda) Fall 2020 4 / 10

RECURSIVE LANGUAGES AND FUNCTIONS

Two variants of accepting a language: we always halt and produce a
positive or negative answer, or we either halt or not halt
Recursive languages: Languages decided by Turing machines

two halting states, one accepting the other rejecting or
one halting state, writes “Y” or “N” on the tape
decides = always halts

Recursive functions:
One halting state, output is what is left on the tape
Mpwq = output of M on input w (defined only when M halts)
f : Σ˚ Ñ Σ˚ is recursive iff DM : @w P Σ˚ : Mpwq “ f pwq

A Turing machine can also compute numerical functions using an
encoding:

we put {0, 1, ; } Ď Σ and then M computes f : Nk
Ñ N iff

Mpw1; w2; ¨ ¨ ¨wk q “ f pw1,w2, . . . ,wk q for all
w1,w2, . . . ,wk P {0}Y {1}{0, 1}˚

CS 455/555 (S. D. Bruda) Fall 2020 5 / 10

RECURSIVELY ENUMERABLE LANGUAGES

M semidecides L P Σ˚ whenever M halts on input w iff w P L for all
w P Σ˚

Recursively enumerable languages include exactly all the languages
semidecided by Turing machines
Any recursive language is recursively enumerable

M 1
“ M N

ÝÑ N ý semidecides the language decided by M

Recursive languages are closed under complementation
We just flip the accepting and rejecting state (or the writing of Y and N)

CS 455/555 (S. D. Bruda) Fall 2020 6 / 10

EXTENSION OF TURING MACHINES

Multiple tapes (natural; actual definition on p. 201)
δ : pK zHq ˆ Σk Ñ K ˆ pΣY {L,R}qk

We put all the tapes as tracks on a single tape

α1 α2 α3 α4 α5 # ¨ ¨ ¨

β1 β2 β3 # ¨ ¨ ¨

ñ Ź

α1 α2 α3 α4 α5
0 0 1 0 0
β1 β2 β3 # #

1 0 0 0 0

¨ ¨ ¨

On every move we must scan the whole non-blank tape ñ quadratic
slowdown

Two-way infinite tape
We pick a point and we fold the tape at that point into a two-track tape
Every state q is replaced by two states q↑ and q↓

q↑ behaves like the original q and operates on the upper track
q↓ behaves like the original except that it reverses the directions of
movement (and operates on the lower track)
Constant slowdown

CS 455/555 (S. D. Bruda) Fall 2020 7 / 10

EXTENSION OF TURING MACHINES (CONT’D)

Nondeterministic Turing machine: Same definition except that we have a
transition relation ∆ Ď pK zHq ˆ Σˆ K ˆ pΣY {L,R}q

Configuration, $M , etc. identical, but now a configuration can yield in one
step more than one configuration
M accepts w iff ps,#w#q $˚M ph,uavq for some u, v P Σ˚, a P Σ

We have one terminating computation (others may be non-terminating)

M semidecides a language L whenever M accepts w iff w P L
M decides L iff

1 For some finite N (depending on M and w) there exists no configuration C
such that ps,#w#q $N

M C (M always halts)
2 w P L iff ps,#w#q $˚M ph, uavq for some u, v P Σ˚, a P Σ (some accepting

computation, others may be rejecting)

M computes f iff @w P Σ : ps,#w#q $˚M ph,#f pwq#qq and Item 1 above
applies

CS 455/555 (S. D. Bruda) Fall 2020 8 / 10

EXTENSION OF TURING MACHINES (CONT’D)

Nondeterministic Turing machine: Same definition except that we have a
transition relation ∆ Ď pK zHq ˆ Σˆ K ˆ pΣY {L,R}q

Configuration, $M , etc. identical, but now a configuration can yield in one
step more than one configuration
M accepts w iff ps,#w#q $˚M ph,uavq for some u, v P Σ˚, a P Σ

We have one terminating computation (others may be non-terminating)

M semidecides a language L whenever M accepts w iff w P L
M decides L iff

1 For some finite N (depending on M and w) there exists no configuration C
such that ps,#w#q $N

M C (M always halts)
2 w P L iff ps,#w#q $˚M ph, uavq for some u, v P Σ˚, a P Σ (some accepting

computation, others may be rejecting)

M computes f iff @w P Σ : ps,#w#q $˚M ph,#f pwq#qq and Item 1 above
applies

CS 455/555 (S. D. Bruda) Fall 2020 8 / 10

EXAMPLE OF NONDETERMINISTIC COMPUTATION:
COMPOSITE NUMBERS

Language: {x P {0}Y {1}{0,1}˚ : Dp,q P {1}{0,1}{0,1}˚ : x “ p ˆ q}
Decided by a very simple and fast nondeterministic Turing machine with
two tapes:

1 First tape contains input x (a binary number)
2 Guess on the second tape a number p ď x and again a number q ď x

h

2 R1

R112

#1

#1

#1

#1

R2

R2

12 R1L
#

R2
1

0

3 Multiply p and q, compare the result with x , accept iff they are equal

CS 455/555 (S. D. Bruda) Fall 2020 9 / 10

DETERMINISM VERSUS NONDETERMINISM

Theorem: If a nondeterministic Turing machine M decides/semidecides L or
computes f then there exists a deterministic Turing machine M 1 that does the
same thing

Crux: Let C $M C1, C $M C2, . . . , C $M Cn. Is there an upper bound for
n?

Sure: n ď r “ |K | ˆ p|Σ| ` 2q

We first construct a machine Md that receives the input and (on a
different tape) a path description i1i2 . . . ik for some k , with 1 ď ij ď r

Md carries on k steps of the computation of M along the path given; it is
deterministic

Then M 1 will be a 3-tape machine; tape 1 contains input w and remains
unchanged, tapes 2 and 3 are initially empty

1 M 1 then generate the next path description on tape 3 in lexicographic order
2 Then M 1 copies w on tape 2 and launches Md
3 If Md is successful, then M 1 reports success; otherwise repeat from Step 1

Exponential slowdown

CS 455/555 (S. D. Bruda) Fall 2020 10 / 10

DETERMINISM VERSUS NONDETERMINISM

Theorem: If a nondeterministic Turing machine M decides/semidecides L or
computes f then there exists a deterministic Turing machine M 1 that does the
same thing

Crux: Let C $M C1, C $M C2, . . . , C $M Cn. Is there an upper bound for
n?

Sure: n ď r “ |K | ˆ p|Σ| ` 2q

We first construct a machine Md that receives the input and (on a
different tape) a path description i1i2 . . . ik for some k , with 1 ď ij ď r

Md carries on k steps of the computation of M along the path given; it is
deterministic

Then M 1 will be a 3-tape machine; tape 1 contains input w and remains
unchanged, tapes 2 and 3 are initially empty

1 M 1 then generate the next path description on tape 3 in lexicographic order
2 Then M 1 copies w on tape 2 and launches Md
3 If Md is successful, then M 1 reports success; otherwise repeat from Step 1

Exponential slowdown

CS 455/555 (S. D. Bruda) Fall 2020 10 / 10

