CS 455/555: Turing machines

Stefan D. Bruda

Fall 2020

TURING MACHINES

@ The most general kind of automaton nput
@ Has access to a general form of storage

Storage

CS 455/555 (S. D. Bruda) Fall 2020 1/10

TURING MACHINES

@ The most general kind of automaton nput
@ Has access to a general form of storage
@ In fact storage and input are put together
on a single, infinite tape
@ The machine can move the head in any
direction
@ Formally, M = (K,X,4,s, H)
@ K, X asbefore;»,#e€X; L R¢ L
_, <, — also common instead of #, L, R
@ H c K (halting states)
e often H = {h}; more convenient that h ¢ K
@ §: (K\H) x X - K x (X u{L,R}) such that for all g € K\H:
@ 4(q,») = (p, b) implies b= R
e §(q,a) = (p, b) implies b # »
o Configuration: K x ©* x (Z*(X\{#}) v {e})
o Configuration (g, wa, w') commonly written as (g, waw’)

Storage

CS 455/555 (S. D. Bruda) Fall 2020 1/10

TURING MACHINES (CONT'D)

@ Yields in one step: (g1, wiaiu1) Fup (Qe, Woao o) iff 6(q1, @) = (qo, b) for
some be ¥ u {L, R} and either o
e beX, Wy =Wo, U = U a =Db,
e b= L, Wiy = Weao,
@ U =aquyifa; ##oru #¢
@ w=cifag=#oru =e,
e b= R, Wwe = Wwiaq,
0 Uy = aslp ifas # #
O Uy =W =cifay=#
@ Yields: -}/, the reflexive and transitive closure of -y

@ Yields in nsteps: Co 7, Cniff Co -m Ci pm -+ =M Cnet Fm Ch

CS 455/555 (S. D. Bruda) Fall 2020 2/10

V78

COMPOSITIONAL NOTATION FOR TURING MACHINES

@ Basic machines: a: VYbexX:i(s,b)=(ha
L: VbeX:i(s,b)=(hL) R: VbeXx:i(s,b)=(hR)
@ Combining machines:
Mo
a
/
M,
a
N
M
M; halts and then either M> or M5 start, depending on whether a is read
(or not) by the head when M; halts
@ Supplementary, handy notations:
e M — N orjust MN for M followed immediately by N
o MXS My
o Ry for R “Ox; Ry for R “Ox; similar for Ly, Ly

CS 455/555 (S. D. Bruda) Fall 2020 3/10

SAMPLE MACHINES

>

CS 455/555 (S. D. Bruda)

(s,#) = (q.L)
(@2,)) = (q2,%#)
(Q,#) = (g3, L)
(q37 /) = (q3a L)
(G #) = (qa)
(Qs,l) = (s R)
<q47 #) = (h7 #)

l#

R#

Fall 2020

SAMPLE MACHINES

(s:#) = (1)
(@) = (G, #)
(G, #f) _ (Gs, t) More concisely:
(g3, 1) (g3, L) > L#LIR:
(g3, #) = (qa)) i
(q47 I) = (q47 R)
<q47 #) = (h7 #)
A copy machine: TM accepting {a"b"c" : n > 0}:
#
R#

CS 455/555 (S. D. Bruda) Fall 2020 4/10

SAMPLE MACHINES

(37 #) = (q2a L)
(2.0) = (G2, #)
(G, #) = (a8,L) More concisely:
(q37 l) = (an L) = L#L*/R*
(g3, #) = (qa)) i
(q47 I) = (q47 R)
<q47 #) = (h7 #)
A copy machine: TM accepting {a"b"c" : n > 0}:
(/Tﬁ
)/,/ﬁ O c Ob a
>L,R “*y R,Rya L,L,a S df# gL
|# J#b\\\ ot
R,

CS 455/555 (S. D. Bruda) Fall 2020 4/10

RECURSIVE LANGUAGES AND FUNCTIONS

@ Two variants of accepting a language: we always halt and produce a
positive or negative answer, or we either halt or not halt
@ Recursive languages: Languages decided by Turing machines
e two halting states, one accepting the other rejecting or
o one halting state, writes “Y” or “N” on the tape
e decides = always halts
@ Recursive functions:
@ One halting state, output is what is left on the tape
e M(w) = output of M on input w (defined only when M halts)
o f:¥* » ¥*isrecursive iff IM: VY we £* : M(w) = f(w)
@ A Turing machine can also compute numerical functions using an

encoding:
e weput{0,1,;} < ¥ and then M computes f : N — N iff
M(wy; wa; - wi) = f(wy, W, ..., wy) for all

Wi, Wa, ..., wx € {0} u {1}{0,1}*

CS 455/555 (S. D. Bruda) Fall 2020 5/10

RECURSIVELY ENUMERABLE LANGUAGES

@ M semidecides L € ¥* whenever M halts on input w iff w € L for all
weX*

@ Recursively enumerable languages include exactly all the languages
semidecided by Turing machines

@ Any recursive language is recursively enumerable

oM =M N, N © semidecides the language decided by M
@ Recursive languages are closed under complementation
o We just flip the accepting and rejecting state (or the writing of Y and N)

CS 455/555 (S. D. Bruda) Fall 2020 6/10

EXTENSION OF TURING MACHINES

@ Multiple tapes (natural; actual definition on p. 201)
§: (K\H) x £k - K x (Z U {L, R})¥
o We put all the tapes as tracks on a single tape

23] @2 @3
0 0 1

B B B
[B1 [B[B [# - T o

Il

o

[or[o2[os[os[os [#

o3| of

0
#
0

@ On every move we must scan the whole non-blank tape = quadratic
slowdown
@ Two-way infinite tape
We pick a point and we fold the tape at that point into a two-track tape
Every state q is replaced by two states g' and g*
q" behaves like the original g and operates on the upper track
g* behaves like the original except that it reverses the directions of
movement (and operates on the lower track)
o Constant slowdown

CS 455/555 (S. D. Bruda) Fall 2020 7/10

EXTENSION OF TURING MACHINES (CONT'D)

@ Nondeterministic Turing machine: Same definition except that we have a
transition relation A < (K\H) x X x K x (X u {L, R})

@ Configuration, -, etc. identical, but now a configuration can yield in one
step more than one configuration
@ M accepts w iff (s, #w#) -y (h,uav) forsome u,ve ¥* ae ¥
@ We have one terminating computation (others may be non-terminating)
@ M semidecides a language L whenever M accepts w iff w e L
@ M decides L iff

CS 455/555 (S. D. Bruda) Fall 2020 8/10

EXTENSION OF TURING MACHINES (CONT'D)

@ Nondeterministic Turing machine: Same definition except that we have a
transition relation A < (K\H) x X x K x (X u {L, R})

@ Configuration, -, etc. identical, but now a configuration can yield in one
step more than one configuration
@ M accepts w iff (s, #w#) -y (h,uav) forsome u,ve ¥* ae ¥
@ We have one terminating computation (others may be non-terminating)
@ M semidecides a language L whenever M accepts w iff w e L
@ M decides L iff
@ For some finite N (depending on M and w) there exists no configuration C
such that (s, #w#) & C (M always halts)
Q welLiff (s, #Wﬁ7) i (h,uav) for some u, v € £*, a€ X (some accepting
computation, others may be rejecting)
@ Mcomputes fiff VweX: (s, #w#) -y, (h #f(w)#)) and Item 1 above
applies

CS 455/555 (S. D. Bruda) Fall 2020 8/10

EXAMPLE OF NONDETERMINISTIC COMPUTATION:

e
COMPOSITE NUMBERS S

@ Language: {x € {0} v {1}{0,1}* : Ip,qe {1}{0,1}{0,1}* : x = p x q}
@ Decided by a very simple and fast nondeterministic Turing machine with
two tapes:

@ First tape contains input x (a binary number)
@ Guess on the second tape a number p < x and again a number g < x

L, 12RIR?

@ Multiply p and g, compare the result with x, accept iff they are equal

CS 455/555 (S. D. Bruda) Fall 2020 9/10

DETERMINISM VERSUS NONDETERMINISM

Theorem: If a nondeterministic Turing machine M decides/semidecides L or
computes f then there exists a deterministic Turing machine M’ that does the
same thing

@ Crux: Let C+p Cy, CHpy Co, ..., Cpy Cp. Is there an upper bound for
n?

CS 455/555 (S. D. Bruda) Fall 2020 10/10

DETERMINISM VERSUS NONDETERMINISM

Theorem: If a nondeterministic Turing machine M decides/semidecides L or
computes f then there exists a deterministic Turing machine M’ that does the
same thing
@ Crux: Let C+p Cy, CHpy Co, ..., Cpy Cp. Is there an upper bound for
n?
@ Sure:n<r=|K|x(|X|+2)
@ We first construct a machine My that receives the input and (on a
different tape) a path description iz . .. ik for some k, with 1 < j; < r
@ My carries on k steps of the computation of M along the path given; it is
deterministic
@ Then M’ will be a 3-tape machine; tape 1 contains input w and remains
unchanged, tapes 2 and 3 are initially empty

@ M’ then generate the next path description on tape 3 in lexicographic order
@ Then M’ copies w on tape 2 and launches My
@ If My is successful, then M’ reports success; otherwise repeat from Step 1

@ Exponential slowdown

CS 455/555 (S. D. Bruda) Fall 2020 10/10

