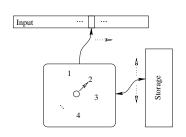
CS 455/555: Turing machines

Stefan D. Bruda

Fall 2020

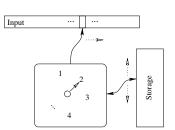
TURING MACHINES

- The most general kind of automaton
- Has access to a general form of storage



TURING MACHINES

- The most general kind of automaton
- Has access to a general form of storage
- In fact storage and input are put together on a single, infinite tape
- The machine can move the head in any direction
- Formally, $M = (K, \Sigma, \delta, s, H)$
- K, Σ as before; •, $\# \in \Sigma$; L, $R \notin \Sigma$
 - \bot , \leftarrow , \rightarrow also common instead of #, L, R
- $H \subseteq K$ (halting states)
 - often $H = \{h\}$; more convenient that $h \notin K$
- $\delta: (K \backslash H) \times \Sigma \to K \times (\Sigma \cup \{L, R\})$ such that for all $q \in K \backslash H$:
 - $\delta(q, \bullet) = (p, b)$ implies b = R
 - $\delta(q, a) = (p, b)$ implies $b \neq \bullet$
- Configuration: $K \times \Sigma^* \times (\Sigma^*(\Sigma \setminus \{\#\}) \cup \{\varepsilon\})$
 - Configuration (q, wa, w') commonly written as (q, waw')



TURING MACHINES (CONT'D)

- Yields in one step: $(q_1, w_1 a_1 u_1) \vdash_M (q_2, w_2 a_2 u_2)$ iff $\delta(q_1, a_1) = (q_2, b)$ for some $b \in \Sigma \cup \{L, R\}$ and either
 - $b \in \Sigma$, $w_1 = w_2$, $u_1 = u_2$, $a_2 = b$,
 - \bullet b = L, $w_1 = w_2 a_2$.
 - $u_2 = a_1 u_1$ if $a_1 \neq \#$ or $u_1 \neq \varepsilon$
 - $u_2 = \varepsilon$ if $a_1 = \#$ or $u_1 = \varepsilon$.
 - \bullet $b = R, w_2 = w_1 a_1,$
 - $u_1 = a_2 u_2$ if $a_2 \neq \#$
 - $u_1 = u_2 = \varepsilon$ if $a_2 = \#$
- Yields: ⊢_M^{*}, the reflexive and transitive closure of ⊢_M
- Yields in *n* steps: $C_0 \vdash_M^n C_n$ iff $C_0 \vdash_M C_1 \vdash_M \cdots \vdash_M C_{n-1} \vdash_M C_n$

COMPOSITIONAL NOTATION FOR TURING MACHINES

- Basic machines: $a: \forall b \in \Sigma : \delta(s,b) = (h,a)$ • $b: \forall b \in \Sigma : \delta(s,b) = (h,L)$ • $b: \forall b \in \Sigma : \delta(s,b) = (h,R)$
- Combining machines:

 M_1 halts and then either M_2 or M_3 start, depending on whether a is read (or not) by the head when M_1 halts

- Supplementary, handy notations:
 - $M \rightarrow N$ or just MN for M followed immediately by N
 - $\bullet \ M \xrightarrow{x=\alpha} M_x$
 - R_x for $R \lesssim_{\overline{x}}$; $R_{\overline{x}}$ for $R \lesssim_x$; similar for L_x , $L_{\overline{x}}$

SAMPLE MACHINES

$$\begin{array}{rcl} (s,\#) & = & (q_2,L) \\ (q_2,I) & = & (q_2,\#) \\ (q_2,\#) & = & (q_3,L) \\ (q_3,I) & = & (q_3,L) \\ (q_3,\#) & = & (q_4,I) \\ (q_4,I) & = & (q_4,R) \\ (q_4,\#) & = & (h,\#) \end{array}$$

$$> L_{\#}R \xrightarrow{a \neq \#} \# R_{\#}R_{\#} a L_{\#}L_{\#}a$$

$$\downarrow \#$$

$$\downarrow R_{\#}$$

SAMPLE MACHINES

$$\begin{array}{rcl} (s,\#) & = & (q_2,L) \\ (q_2,I) & = & (q_2,\#) \\ (q_2,\#) & = & (q_3,L) \\ (q_3,I) & = & (q_3,L) \\ (q_3,\#) & = & (q_4,I) \\ (q_4,I) & = & (q_4,R) \\ (q_4,\#) & = & (h,\#) \end{array}$$

More concisely: $> L \# L_{\bar{1}} I R_{\bar{1}}$

A copy machine:

TM accepting $\{a^nb^nc^n: n \ge 0\}$:

$$> L_{\#}R \xrightarrow{\alpha \neq \#} \# R_{\#}R_{\#} a L_{\#}L_{\#}a$$

$$\downarrow \#$$

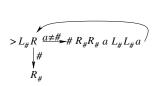
$$\downarrow R_{\#}$$

SAMPLE MACHINES

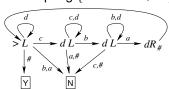
$$\begin{array}{rcl} (s,\#) & = & (q_2,L) \\ (q_2,I) & = & (q_2,\#) \\ (q_2,\#) & = & (q_3,L) \\ (q_3,I) & = & (q_3,L) \\ (q_3,\#) & = & (q_4,I) \\ (q_4,I) & = & (q_4,R) \\ (q_4,\#) & = & (h,\#) \end{array}$$

More concisely: $> L \# L_{\overline{I}} I R_{\overline{I}}$

A copy machine:



TM accepting $\{a^nb^nc^n: n \ge 0\}$:



RECURSIVE LANGUAGES AND FUNCTIONS

- Two variants of accepting a language: we always halt and produce a positive or negative answer, or we either halt or not halt
- Recursive languages: Languages decided by Turing machines
 - two halting states, one accepting the other rejecting or
 - one halting state, writes "Y" or "N" on the tape
 - decides = always halts
- Recursive functions:
 - One halting state, output is what is left on the tape
 - M(w) = output of M on input w (defined only when M halts)
 - $f: \Sigma^* \to \Sigma^*$ is recursive iff $\exists M : \forall w \in \Sigma^* : M(w) = f(w)$
- A Turing machine can also compute numerical functions using an encoding:
 - we put $\{0, 1, ;\}\subseteq \Sigma$ and then M computes $f: \mathbb{N}^k \to \mathbb{N}$ iff $M(w_1; w_2; \cdots w_k) = f(w_1, w_2, \ldots, w_k)$ for all $w_1, w_2, \ldots, w_k \in \{0\} \cup \{1\}\{0, 1\}^*$

<u>Recursiv</u>ely enumerable languages

- M semidecides $L \in \Sigma^*$ whenever M halts on input w iff $w \in L$ for all $W \in \Sigma^*$
- Recursively enumerable languages include exactly all the languages semidecided by Turing machines
- Any recursive language is recursively enumerable
 - $M' = M \xrightarrow{N} N$ semidecides the language decided by M
- Recursive languages are closed under complementation
 - We just flip the accepting and rejecting state (or the writing of Y and N)

CS 455/555 (S. D. Bruda) Fall 2020

EXTENSION OF TURING MACHINES

- Multiple tapes (natural; actual definition on p. 201) $\delta: (K \backslash H) \times \Sigma^k \to K \times (\Sigma \cup \{L, R\})^k$
 - We put all the tapes as tracks on a single tape

α_1 α_2 α_3 α_4	α ₅ # · · ·			α_1	α_2	α_3	α_4	α_5	
1 2 3 4	3 1		D>	0	0	1	0	0	
β_1 β_2 β_3 $\# \cdots$		\Rightarrow		β1	β2	β_3	#	#	#
β_1 β_2 β_3 β_3 β_4	·			1	0	0	0	0	

- On every move we must scan the whole non-blank tape ⇒ quadratic slowdown
- Two-way infinite tape
 - We pick a point and we fold the tape at that point into a two-track tape
 - Every state q is replaced by two states q^{\uparrow} and q^{\downarrow}
 - q^{\uparrow} behaves like the original q and operates on the upper track
 - q¹ behaves like the original except that it reverses the directions of movement (and operates on the lower track)

Constant slowdown

EXTENSION OF TURING MACHINES (CONT'D)

- Nondeterministic Turing machine: Same definition except that we have a transition relation $\Delta \subseteq (K \setminus H) \times \Sigma \times K \times (\Sigma \cup \{L, R\})$
- Configuration, \vdash_M , etc. identical, but now a configuration can yield in one step more than one configuration
- M accepts w iff (s, #w#) ⊢_M* (h, uav) for some u, v ∈ Σ*, a ∈ Σ
 We have one terminating computation (others may be non-terminating)
- M semidecides a language L whenever M accepts w iff $w \in L$
- M decides L iff

CS 455/555 (S. D. Bruda) Fall 2020 8 / 10

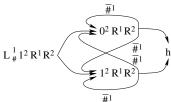
EXTENSION OF TURING MACHINES (CONT'D)

- Nondeterministic Turing machine: Same definition except that we have a transition relation $\Delta \subseteq (K \setminus H) \times \Sigma \times K \times (\Sigma \cup \{L, R\})$
- Configuration, \vdash_M , etc. identical, but now a configuration can yield in one step more than one configuration
- M accepts w iff $(s, \#w \underline{\#}) \vdash_{M}^{*} (h, u\underline{a}v)$ for some $u, v \in \Sigma^{*}, a \in \Sigma$
 - We have one terminating computation (others may be non-terminating)
- M semidecides a language L whenever M accepts w iff $w \in L$
- M decides L iff
 - For some finite N (depending on M and w) there exists no configuration C such that $(s, \#w\#) \vdash_{M}^{N} C$ (M always halts)
 - ② $w \in L$ iff $(s, \#w\#) \vdash_M^* (h, u\underline{a}v)$ for some $u, v \in \Sigma^*$, $a \in \Sigma$ (some accepting computation, others may be rejecting)
- M computes f iff $\forall w \in \Sigma : (s, \#w\underline{\#}) \vdash_M^* (h, \#f(w)\underline{\#}))$ and Item 1 above applies

CS 455/555 (S. D. Bruda) Fall 2020 8 / 10

EXAMPLE OF NONDETERMINISTIC COMPUTATION: COMPOSITE NUMBERS

- Language: $\{x \in \{0\} \cup \{1\}\{0,1\}^* : \exists p, q \in \{1\}\{0,1\}\{0,1\}^* : x = p \times q\}$
- Decided by a very simple and fast nondeterministic Turing machine with two tapes:
 - First tape contains input x (a binary number)
 - **Q** Guess on the second tape a number $p \le x$ and again a number $q \le x$



Multiply p and q, compare the result with x, accept iff they are equal

CS 455/555 (S. D. Bruda) Fall 2020 9 / 10

DETERMINISM VERSUS NONDETERMINISM

Theorem: If a nondeterministic Turing machine M decides/semidecides L or computes f then there exists a deterministic Turing machine M' that does the same thing

• Crux: Let $C \vdash_M C_1$, $C \vdash_M C_2$, ..., $C \vdash_M C_n$. Is there an upper bound for n?

CS 455/555 (S. D. Bruda) Fall 2020 10 / 10

DETERMINISM VERSUS NONDETERMINISM

Theorem: If a nondeterministic Turing machine M decides/semidecides L or computes f then there exists a deterministic Turing machine M' that does the same thing

- Crux: Let $C \vdash_M C_1$, $C \vdash_M C_2$, ..., $C \vdash_M C_n$. Is there an upper bound for n?
 - Sure: $n \le r = |K| \times (|\Sigma| + 2)$
- We first construct a machine M_d that receives the input and (on a different tape) a path description $i_1 i_2 \dots i_k$ for some k, with $1 \le i_i \le r$
 - M_d carries on k steps of the computation of M along the path given; it is deterministic
- Then M' will be a 3-tape machine; tape 1 contains input w and remains unchanged, tapes 2 and 3 are initially empty
 - M' then generate the next path description on tape 3 in lexicographic order
 - ② Then M' copies w on tape 2 and launches M_d
 - If M_d is successful, then M' reports success; otherwise repeat from Step 1

Exponential slowdown