SETS AND RELATIONS

@ Sets:

o Operations: intersection, union, difference, Cartesian product
. o . e Big |, powerset (24

CS 455/555: Mathematical preliminaries o partHon (rC2A0gmVi#j mnm=0,U,., m=A)

o Equality

o De Morgan rules

Stefan D. Bruda © Relations:
o An n-ary relation over a set A: R C A”
@ Binary relations R C A x A = graph representation
@ reflexive: vac A: (a,a) € R
Fall 2020 @ symmetric: Va,bc A: (a,b) e R= (b,a) € R
© antisymmetric: Va,bc A: (a,b) € R= (b,a) ¢ R
@ transitive: Va,b,c € A: (a,b) € RA(b,c) € R= (a,c) € R
o 1+4: preorder
e 1+4+2: equivalence =-partition in equivalence classes [a] = {b : (a,b) € R}
o 1+4+3: partial order (then total order)

CS 455/555 (S. D. Bruda) Fall 2020 1/7

FUNCTIONS AND CARDINALITY - | PROOF TECHNIQUES

@ Induction: If

. , . L @ 0cA and
@ Functions: f: A — B; special relations; one-to-one, onto, bijection Q@ vn:{01,....ntCA=>n+1cA
o Natural isomorphism = “natural” bijection (e.g. between A x B x C and then A= N
Ax (B x C), between Aand {{a} : a € A}) @ Pigeonhole principle: If |A] > |B| then there is no one-to-one function
@ Cardinality: Binary relation (equivalence!) £ over the set of all sets f-A->B
o (A,B) € £ also denoted by |A| = [B| =-A and B are equinumerous = there o Useful example: If there is a path between vertices a and b of a graph with n
exists a bijection e : A — B vertices then there is a path between a and b of length at most n

o Interesting kind of sets

o finite: (A,{1,2,...,n}) € € for some n € N; also written |A| = n
@ (infinitely) countable: |A| = |N| (count the elements)

@ uncountable R.={b:be An(a,b) e R} D={a:acAA(aa) ¢ R}
o Is N x IN countable?

@ Diagonalization: Given some relation R C A x A, let

Then D # R,foranyac A

@ Useful in proofs by contradiction
e Interesting examples: 2~ is uncountable; [0, 1] is uncountable

CS 455/555 (S. D. Bruda) Fall 2020 2/7 CS 455/555 (S. D. Bruda) Fall 2020 3/7

CLOSURES - B ALPHABETS AND STRINGS

@ The math of strings of symbols (such as strings of bits)
@ Alphabet X: a finite set of symbols

@ RC D"t forsomen>0,BC D .
@ Strings (not sets!) over an alphabet

@ Bis closed under R if b,,1 € B whenever by, b, ..., b, € Band

(b1, b, ..., bp, bos1) € R @ The set of all strings over X: ©*
@ Closure property: “Biis closed under Ry, Rs, ..., Ry" ® Empty string: € (also A, in the text e)
@ Let P be a closure property (under Ry, Rs, ..., Ry) and A C D. Then @ Operations: length (|w|), concatenation (- or juxtaposition), substring,
there exists a minimal B such that A C B and P holds for B suffix, prefix
o Bis the closure of Aunder Ry, Rz, ..., Rn @ Length over a set A: |w|, is the length of the string w from which all the
o Useful example: The reflexive and transitive closure of R is the closure of R symbols not in A have been erased
under reflexivity and transitivity o Abuse of notation: |w|; is a shorthand for ||,

@ Exponentiation: w® = ¢; w'*' = w'w
@ Reversal: w=ec=>wB =¢;forac X: w=uva= wh = aul

CS 455/555 (S. D. Bruda) Fall 2020 4/7 CS 455/555 (S. D. Bruda) Fall 2020 5/7

REGULAR EXPRESSIONS AND

LANGUAGES

REGULAR LANGUAGES

@ Language: set of strings

@ Can be finite, infinite, countable, etc @ We start with very simple languages and then we combine them using a
@ Y *is a language (countable?) set of usual set operations

@ Operations: union, intersection, difference, complement (A = ¥* \ A) o The set of regular languages is then the closure of {{a} : ac X} U {0}

. under concatenation, union, and Kleene star
® Concatenation: LiL = {wiwz : w1 € Ly Aw; € Lo} @ Simpler to work with an inductive definition: Regular expressions and
@ Kleene star (or closure—under what?): their associated languages are defined as follows
o () is aregular expression; L(0) =0
e ais aregular expressionforallae X; L(a)={a}
o If « and 3 are regular expressions then so are a8, « U 38, and a*;

L*={wiwo---wp,:n>0AV1<i<n:welL}

@ Are there languages that cannot be represented? L(aB) = L()L(B) L(aUB) = L(@)ULB) L(a*)=L(a)

@ We generally work with mathematical descriptions o Nothing else is a regular expression

@ Generators are useful for describing languages @ Regular expressions are language generators

@ Generally once the language is described we find convenient to work with @ The set REG of regular languages contain exactly all the languages
a regognition device (is it the case that w € L?) instead generated by regular expressions

CS 455/555 (S. D. Bruda) Fall 2020 6/7 CS 455/555 (S. D. Bruda) Fall 2020 717

