
CS 455/555: Mathematical preliminaries

Stefan D. Bruda

Fall 2020

SETS AND RELATIONS

Sets:
Operations: intersection, union, difference, Cartesian product
Big

⋃
, powerset (2A)

Partition (π ⊆ 2A, ∅ 6∈ π, ∀i 6= j : πi ∩ πj = ∅, ⋃πi∈π πi = A)
Equality
De Morgan rules

Relations:
An n-ary relation over a set A: R ⊆ An

Binary relations R ⊆ A× A⇒ graph representation
1 reflexive: ∀a ∈ A : (a, a) ∈ R
2 symmetric: ∀a, b ∈ A : (a, b) ∈ R ⇒ (b, a) ∈ R
3 antisymmetric: ∀a, b ∈ A : (a, b) ∈ R ⇒ (b, a) 6∈ R
4 transitive: ∀a, b, c ∈ A : (a, b) ∈ R ∧ (b, c) ∈ R ⇒ (a, c) ∈ R

1+4: preorder
1+4+2: equivalence⇒partition in equivalence classes [a] = {b : (a, b) ∈ R}
1+4+3: partial order (then total order)

CS 455/555 (S. D. Bruda) Fall 2020 1 / 7

FUNCTIONS AND CARDINALITY

Functions: f : A→ B; special relations; one-to-one, onto, bijection
Natural isomorphism = “natural” bijection (e.g. between A× B × C and
A× (B × C), between A and {{a} : a ∈ A})

Cardinality: Binary relation (equivalence!) E over the set of all sets
(A,B) ∈ E also denoted by |A| = |B| ⇒A and B are equinumerous = there
exists a bijection e : A→ B
Interesting kind of sets

finite: (A, {1, 2, . . . , n}) ∈ E for some n ∈ N; also written |A| = n
(infinitely) countable: |A| = |N| (count the elements)
uncountable

Is N×N countable?

CS 455/555 (S. D. Bruda) Fall 2020 2 / 7

PROOF TECHNIQUES

Induction: If
1 0 ∈ A, and
2 ∀n : {0, 1, . . . , n} ⊆ A⇒ n + 1 ∈ A

then A = N

Pigeonhole principle: If |A| > |B| then there is no one-to-one function
f : A→ B

Useful example: If there is a path between vertices a and b of a graph with n
vertices then there is a path between a and b of length at most n

Diagonalization: Given some relation R ⊆ A× A, let

Ra = {b : b ∈ A ∧ (a,b) ∈ R} D = {a : a ∈ A ∧ (a,a) 6∈ R}

Then D 6= Ra for any a ∈ A
Useful in proofs by contradiction
Interesting examples: 2N is uncountable; [0, 1] is uncountable

CS 455/555 (S. D. Bruda) Fall 2020 3 / 7

CLOSURES

R ⊆ Dn+1 for some n > 0, B ⊆ D
B is closed under R if bn+1 ∈ B whenever b1,b2, . . . ,bn ∈ B and
(b1,b2, . . . ,bn,bn+1) ∈ R
Closure property: “B is closed under R1, R2, . . . , Rn”
Let P be a closure property (under R1, R2, . . . , Rn) and A ⊆ D. Then
there exists a minimal B such that A ⊆ B and P holds for B

B is the closure of A under R1, R2, . . . , Rn

Useful example: The reflexive and transitive closure of R is the closure of R
under reflexivity and transitivity

CS 455/555 (S. D. Bruda) Fall 2020 4 / 7

ALPHABETS AND STRINGS

The math of strings of symbols (such as strings of bits)
Alphabet Σ: a finite set of symbols
Strings (not sets!) over an alphabet
The set of all strings over Σ: Σ∗

Empty string: ε (also λ, in the text e)
Operations: length (|w |), concatenation (· or juxtaposition), substring,
suffix, prefix
Length over a set A: |w |A is the length of the string w from which all the
symbols not in A have been erased

Abuse of notation: |w |a is a shorthand for |w |{a}
Exponentiation: w0 = ε; w i+1 = w iw
Reversal: w = ε⇒ wR = ε; for a ∈ Σ: w = ua⇒ wR = auR

CS 455/555 (S. D. Bruda) Fall 2020 5 / 7

LANGUAGES

Language: set of strings
Can be finite, infinite, countable, etc
Σ∗ is a language (countable?)
Operations: union, intersection, difference, complement (A = Σ∗ \ A)
Concatenation: L1L2 = {w1w2 : w1 ∈ L1 ∧ w2 ∈ L2}
Kleene star (or closure—under what?):

L∗ = {w1w2 · · ·wn : n ≥ 0 ∧ ∀1 ≤ i ≤ n : wi ∈ L}

Are there languages that cannot be represented?
We generally work with mathematical descriptions
Generators are useful for describing languages
Generally once the language is described we find convenient to work with
a regognition device (is it the case that w ∈ L?) instead

CS 455/555 (S. D. Bruda) Fall 2020 6 / 7

REGULAR EXPRESSIONS AND

REGULAR LANGUAGES

We start with very simple languages and then we combine them using a
set of usual set operations

The set of regular languages is then the closure of {{a} : a ∈ Σ} ∪ {∅}
under concatenation, union, and Kleene star

Simpler to work with an inductive definition: Regular expressions and
their associated languages are defined as follows

∅ is a regular expression; L(∅) = ∅
a is a regular expression for all a ∈ Σ; L(a) = {a}
If α and β are regular expressions then so are αβ, α ∪ β, and α∗;
L(αβ) = L(α)L(β) L(α ∪ β) = L(α) ∪ L(β) L(α∗) = L(α)∗

Nothing else is a regular expression

Regular expressions are language generators
The set REG of regular languages contain exactly all the languages
generated by regular expressions

CS 455/555 (S. D. Bruda) Fall 2020 7 / 7

