AUTOMATA (FINITE OR NOT)

@ Generally any automaton
e Has a finite-state control Tnput][~
- Eini @ Scans the input one symbol at a time
CS 455/555: Finite automata o Takes an action based on the currently
scanned symbol and the current state
o The action taken may yield a different

Storage

Stefan D. Bruda current state
o May make use of some form of extra
storage
Fall 2020 @ A finite automaton scans the input from left to right only and uses no

additional storage

e It cannot go back in the input
@ It can only remember (using the finite state control) a finite amount of
information about the already seen input

CS 455/555 (S. D. Bruda) Fall 2020 1/11

DETERMINISTIC FINITE AUTOMATA - | NONDETERMINISTIC FINITE AUTOMATA

@ A deterministic finite automaton is a tuple M = (K, %, 4, s, F) @ A nondeterministic finite automaton is a tuple M = (K, X, A, s, F)
o K = finite set of states o K = finite set of states
@ Y = input alphabet @ Y = input alphabet
e F C K = set of final states e F C K = set of final states
@ s € K = initial state @ s € K = initial state
@ §: K x ¥ — K = transition function o A C K x(XU{e}) x K = transition relation

@ Configuration: c € K x ©* @ Configuration: c € K x ©*

@ Yields in one step: (q,aw) Fy (q',w) iffac X and §(q,a) = ¢’ @ Yields in one step: (g,aw) by (q',w)iffac X U{c} and (g,a.q') € A
o 3, = reflexive and transitive closure o 3, = reflexive and transitive closure

@ wis accepted by Miff 3g € F: (s,w) F}, (g, ¢) @ wis accepted by Miff 3g € F: (s,w) F}, (g,¢)

@ The language accepted by M: @ The language accepted by M:

LM)={weX*:3qeF:(s,w)k}(q,e)} LM)={weXx*:3qeF:(s,w)ty(q,e)}

CS 455/555 (S. D. Bruda) Fall 2020 2/11 CS 455/555 (S. D. Bruda) Fall 2020 3/11

DETERMINISM VERSUS NONDETERMINISM

CLOSURE PROPERTIES

@ Languages accepted by finite automata?
o Of finite strings for sure

@ Deterministic FA =-special case of nondeterministic FA

@ In fact the two kind of finite automaton accept the same languages

o M=(K,L,A,s,F)= M =(K',L,¥§,s',F') such that L(M) = L(M")
K/ — 2K

Let E(q) be the closure of {g} under {(p,r) : (p,e,r) € A}

s’ = E(s)

FF={QCK:QNnF#0}

3'(Q,a) =J{E(p): p € K,(q,a,p) € A forsome g € Q}

(proof on p. 71)

@ DFA are more efficient, potentially difficult to understand, and often
considerably larger (how much larger?)

CS 455/555 (S. D. Bruda) Fall 2020 4/11

o My = (Ki,X,Aq,s1,F) and Mm = (Kz, L, Ao, So, F2). Can we construct
M= (K,X,A,s, F)such that
e L(M) = L(My)U L(M) (closure under union)?
K=K UK F=FRUFR A=A UAU{(s,¢,51),(S,¢,82)}
o L(M) = L(M;)L(M) (closure under concatenation)?
S= 54 F=F A=A1UA2U{(f,8,Sg)ZfEF1}
o L(M) = L(M;)" (closure under Kleene star)?
S=5 F=F A =AyU{(f,e,s1): fe F}U{(s1,e,f): fe F}
o L(M) = L(M;) (closure under complement)?
S=5 0 = 04 F1:K\F
e L(M) = L(My)N L(M) (closure under intersection)?

L(M) N L(My) = L(My) U L(M)

CS 455/555 (S. D. Bruda) Fall 2020 5/11

CLOSURE UNDER INTERSECTION (CONSTRUCTIVE)

(*] M1 = (K1,Z,S1,51,F1), M2 = (K27Z,32,(52, Fg) =M= (K,Z,S, (5, F) such
that L(My) N L(Mz) = L(M)

@ M must somehow run M; and M. “in parallel” to determine whether both
accept the input

o It follows that at any given time we have to keep track of the current
states of both My and M. We thus put K = Ki x Ka

@ At the beginning of the computation both M; and M- are in their
respective initial states, so s = (s1, $2)

@ Similarly, in order for the input to be accepted, both M; and M. must be in

one of their respective final states, so F = F1 x F

@ Finally, 6 should allow M to perform simultaneously exactly one transition
of My and exactly one transition of Ma: 6((g1, q2). @) = (g}, g5) iff
61(q1, @) = q; and d2(qz, @) = g5

CS 455/555 (S. D. Bruda) Fall 2020 6/11

LANGUAGES ACCEPTED BY FINITE AUTOMATA

@ Theorem: Finite automata accept exactly all the languages in REG
o O:
o REG = closure of {{a} : a € ¥} U () under union, concatenation, and Kleene
star
o Clearly FA accept {a}, # and are closed under the above operations
@ So FA accept all REG (closure is minimal)

o LetM=({ag1,q,...,q:}, X, 7,1, F)

o Let (i,], k) be the path from g; to g; of rank k (i.e., g. in the path implies
a < K)

Let R(i,j, k) be the set of strings in X* along all the paths (i, j, k)
Obviously, L(M) = U{R(1,j,n): g; € F}

We prove that all R(/, j, k) are regular by induction over k

basis: All the (i, j, 0) are transitions of M only, so R(i, j, k) are clearly regular
inductive hypothesis: all the R(i,j, k — 1) are regular

R(i,j, k) = R(i,j,k — 1) UR(i,k,k — 1)R(k,k,k — 1)*R(k,j, k — 1)
then R(i,], k) are regular given the closure of regular expressions under
union, concatenation, and Kleene star

CS 455/555 (S. D. Bruda) Fall 2020 7/11

STATE MINIMIZATION - ll ALGORITHM FOR STATE MINIMIZATION

@ Easy to eliminate unreachable states, but this does not yield an optimal

automaton
@ Can also merge states that are equivalent to others
o Equivalent states are states that produce the same strings @ Let M= (K,%,4,s,f). Let Ay C K x * such that (g, w) € Ay, iff
o letLC¥*andx,ye¥*. Thenx ~, yifxze Liffyze Lforall x € ©* (q,w) 5 (f,¢)
o X={yer y~ix} o Letg=piffforall ze £*: (q,2) € Ay iff (p, 2) € Ay

o Let M = (K,%,4,s,f). Then x «~y, y iff there exists g € K such that
(s, x) i (g.€) and (s, y) Fy (g, €)
@ Xyy |mp|leS X=cmy Yy
o The number of states of M must be at least as large as the number of
equivalence classes in £(M) under ~

@ = can be computed iteratively (=q, =1, =», ...) as follows:

@ =, partitions K into Fand K \ F

Q repeatforne N:

@ g =npwheneverq=,_1pandd(q,a) =,_1d(p,a)forallac ™

@ until =, is the same as =,_1
@ =, is a proper refinement of =,_1 so the algorithm terminates after at
Let L € ¥* be a regular language. Then there exists a deterministic finite most |K| — 1 iterations = polynomial complexity
automaton with precisely as many states as there are equivalence classes in

ML

K = {[x] : x € ¥*}, the set of equivalence classes under ~;
s=[] F={lxl:xel} 4], a) =[x

CS 455/555 (5. D. Bruda) Fall 2020 9/11
PF 2
ALGORITHMS FOR REGULAR LANGUAGES 1

@ nondeterministic FA to regular expression =-exponential time automtata (tqete'rrr’[]iniStiCt'or not), arIId anytczznbinatict)n off l:r:lioné
o O(IK|) computations of R(i.j. k). but (. J. k) doubles each time concatenation, intersection, complement, Kleene star of the above

o Whether two FA or regular expressions accept/generate the same @ Languages that are not regular can be found using a pumping theorem:

language Th .
eorem (Pumping regular languages
@ polynomial time for DFA (ping reg guag)

o likely exponential time for NFA, regular expressions Let L be a regular language. Then there exists n > 1 such that any w € L with
o Decide whether w € £(M): |w| > n can be written as w = xyz with

e O(|w|) if M is deterministic °oyFe
e O(|K|?|w]) if M is nondeterministic o |xy|<n

o xylzelLforalli>0

@ Typical application of regular languages: pattern matching Trivial proof using the pigeonhole principle

Ly ={w e X" : xis a substring of w} @ Typical examples of non-regular languages: {a"b" : n > 0},
{aP : pis prime}, {a"b"c™ : n,m > 0}

CS 455/555 (S. D. Bruda) Fall 2020 10/11 CS 455/555 (S. D. Bruda) Fall 2020 11/11

