
CS 455/555: Finite automata

Stefan D. Bruda

Fall 2020

AUTOMATA (FINITE OR NOT)

Generally any automaton
Has a finite-state control
Scans the input one symbol at a time
Takes an action based on the currently
scanned symbol and the current state
The action taken may yield a different
current state
May make use of some form of extra
storage

S
to

ra
g
e1

2

3

4

...

... ...Input

A finite automaton scans the input from left to right only and uses no
additional storage

It cannot go back in the input
It can only remember (using the finite state control) a finite amount of
information about the already seen input

CS 455/555 (S. D. Bruda) Fall 2020 1 / 11

DETERMINISTIC FINITE AUTOMATA

A deterministic finite automaton is a tuple M = (K ,Σ, δ, s,F)

K ⇒ finite set of states
Σ⇒ input alphabet
F ⊆ K ⇒ set of final states
s ∈ K ⇒ initial state
δ : K × Σ→ K ⇒ transition function

Configuration: c ∈ K × Σ∗

Yields in one step: (q,aw) `M (q′,w) iff a ∈ Σ and δ(q,a) = q′

`∗M ⇒ reflexive and transitive closure

w is accepted by M iff ∃q ∈ F : (s,w) `∗M (q, ε)

The language accepted by M:

L(M) = {w ∈ Σ∗ : ∃q ∈ F : (s,w) `∗M (q, ε)}

CS 455/555 (S. D. Bruda) Fall 2020 2 / 11

NONDETERMINISTIC FINITE AUTOMATA

A nondeterministic finite automaton is a tuple M = (K ,Σ,∆, s,F)

K ⇒ finite set of states
Σ⇒ input alphabet
F ⊆ K ⇒ set of final states
s ∈ K ⇒ initial state
∆ ⊆ K × (Σ ∪ {ε})× K ⇒ transition relation

Configuration: c ∈ K × Σ∗

Yields in one step: (q,aw) `M (q′,w) iff a ∈ Σ ∪ {ε} and (q,a,q′) ∈ ∆

`∗M ⇒ reflexive and transitive closure

w is accepted by M iff ∃q ∈ F : (s,w) `∗M (q, ε)

The language accepted by M:

L(M) = {w ∈ Σ∗ : ∃q ∈ F : (s,w) `∗M (q, ε)}

CS 455/555 (S. D. Bruda) Fall 2020 3 / 11

DETERMINISM VERSUS NONDETERMINISM

Languages accepted by finite automata?
Of finite strings for sure

Deterministic FA⇒special case of nondeterministic FA
In fact the two kind of finite automaton accept the same languages
M = (K ,Σ,∆, s,F)⇒ M ′ = (K ′,Σ, δ′, s′,F ′) such that L(M) = L(M ′)

K ′ = 2K

Let E(q) be the closure of {q} under {(p, r) : (p, ε, r) ∈ ∆}
s′ = E(s)
F ′ = {Q ⊆ K : Q ∩ F 6= ∅}
δ′(Q, a) =

⋃{E(p) : p ∈ K , (q, a, p) ∈ ∆ for some q ∈ Q}
(proof on p. 71)
DFA are more efficient, potentially difficult to understand, and often
considerably larger (how much larger?)

CS 455/555 (S. D. Bruda) Fall 2020 4 / 11

CLOSURE PROPERTIES

M1 = (K1,Σ,∆1, s1,F1) and M2 = (K2,Σ,∆2, s2,F2). Can we construct
M = (K ,Σ,∆, s,F) such that

L(M) = L(M1) ∪ L(M2) (closure under union)?
K = K1 ∪ K2 F = F1 ∪ F2 ∆ = ∆1 ∪∆2 ∪ {(s, ε, s1), (s, ε, s2)}
L(M) = L(M1)L(M2) (closure under concatenation)?
s = s1 F = F2 ∆ = ∆1 ∪∆2 ∪ {(f , ε, s2) : f ∈ F1}
L(M) = L(M1)∗ (closure under Kleene star)?
s = s1 F = F1 ∆ = ∆1 ∪ {(f , ε, s1) : f ∈ F1} ∪ {(s1, ε, f) : f ∈ F1}
L(M) = L(M1) (closure under complement)?
s = s1 δ = δ1 F1 = K \ F
L(M) = L(M1) ∩ L(M2) (closure under intersection)?
L(M1) ∩ L(M2) = L(M1) ∪ L(M1)

CS 455/555 (S. D. Bruda) Fall 2020 5 / 11

CLOSURE UNDER INTERSECTION (CONSTRUCTIVE)

M1 = (K1,Σ, s1, δ1,F1), M2 = (K2,Σ, s2, δ2,F2)⇒M = (K ,Σ, s, δ,F) such
that L(M1) ∩ L(M2) = L(M)

M must somehow run M1 and M2 “in parallel” to determine whether both
accept the input
It follows that at any given time we have to keep track of the current
states of both M1 and M2. We thus put K = K1 × K2

At the beginning of the computation both M1 and M2 are in their
respective initial states, so s = (s1, s2)

Similarly, in order for the input to be accepted, both M1 and M2 must be in
one of their respective final states, so F = F1 × F2

Finally, δ should allow M to perform simultaneously exactly one transition
of M1 and exactly one transition of M2: δ((q1,q2),a) = (q′1,q

′
2) iff

δ1(q1,a) = q′1 and δ2(q2,a) = q′2

CS 455/555 (S. D. Bruda) Fall 2020 6 / 11

LANGUAGES ACCEPTED BY FINITE AUTOMATA

Theorem: Finite automata accept exactly all the languages in REG
⊇:

REG = closure of {{a} : a ∈ Σ} ∪ ∅ under union, concatenation, and Kleene
star
Clearly FA accept {a}, ∅ and are closed under the above operations
So FA accept all REG (closure is minimal)

⊆:
Let M = ({q1, q2, . . . , qn},Σ,∆, q1,F)
Let 〈i , j , k〉 be the path from qi to qj of rank k (i.e., qα in the path implies
α ≤ k)
Let R(i , j , k) be the set of strings in Σ∗ along all the paths 〈i , j , k〉
Obviously, L(M) =

⋃{R(1, j , n) : qj ∈ F}
We prove that all R(i , j , k) are regular by induction over k
basis: All the 〈i , j , 0〉 are transitions of M only, so R(i , j , k) are clearly regular
inductive hypothesis: all the R(i , j , k − 1) are regular
R(i , j , k) = R(i , j , k − 1) ∪ R(i , k , k − 1)R(k , k , k − 1)∗R(k , j , k − 1)
then R(i , j , k) are regular given the closure of regular expressions under
union, concatenation, and Kleene star

CS 455/555 (S. D. Bruda) Fall 2020 7 / 11

STATE MINIMIZATION

Easy to eliminate unreachable states, but this does not yield an optimal
automaton
Can also merge states that are equivalent to others

Equivalent states are states that produce the same strings
Let L ⊆ Σ∗ and x , y ∈ Σ∗. Then x ≈L y if xz ∈ L iff yz ∈ L for all x ∈ Σ∗

[x] = {y ∈ Σ∗ : y ≈L x}
Let M = (K ,Σ, δ, s, f). Then x vM y iff there exists q ∈ K such that
(s, x) `∗M (q, ε) and (s, y) `∗M (q, ε)

x vM y implies x ≈L(M) y
The number of states of M must be at least as large as the number of
equivalence classes in L(M) under ≈

Theorem
Let L ∈ Σ∗ be a regular language. Then there exists a deterministic finite
automaton with precisely as many states as there are equivalence classes in
≈L

K = {[x] : x ∈ Σ∗}, the set of equivalence classes under ≈L
s = [ε] F = {[x] : x ∈ L} δ([x],a) = [xa]

CS 455/555 (S. D. Bruda) Fall 2020 8 / 11

ALGORITHM FOR STATE MINIMIZATION

Let M = (K ,Σ, δ, s, f). Let AM ⊆ K × Σ∗ such that (q,w) ∈ AM iff
(q,w) `∗M (f , ε)

Let q ≡ p iff for all z ∈ Σ∗: (q, z) ∈ AM iff (p, z) ∈ AM

≡ can be computed iteratively (≡0, ≡1, ≡2, . . .) as follows:
1 ≡0 partitions K into F and K \ F
2 repeat for n ∈ N:

1 q ≡n p whenever q ≡n−1 p and δ(q, a) ≡n−1 δ(p, a) for all a ∈ Σ

3 until ≡n is the same as ≡n−1

≡n is a proper refinement of ≡n−1 so the algorithm terminates after at
most |K | − 1 iterations⇒ polynomial complexity

CS 455/555 (S. D. Bruda) Fall 2020 9 / 11

ALGORITHMS FOR REGULAR LANGUAGES

nondeterministic to deterministic FA⇒exponential time
nondeterministic FA to regular expression⇒exponential time

O(|K |) computations of R(i , j , k), but R(i , j , k) doubles each time

Whether two FA or regular expressions accept/generate the same
language

polynomial time for DFA
likely exponential time for NFA, regular expressions

Decide whether w ∈ L(M):
O(|w |) if M is deterministic
O(|K |2|w |) if M is nondeterministic

Typical application of regular languages: pattern matching

Lx = {w ∈ Σ∗ : x is a substring of w}

CS 455/555 (S. D. Bruda) Fall 2020 10 / 11

REGULAR AND NON-REGULAR LANGUAGES

Regular languages can be described by regular expressions, finite
automata (deterministic or not), and any combination of union,
concatenation, intersection, complement, Kleene star of the above
Languages that are not regular can be found using a pumping theorem:

Theorem (Pumping regular languages)
Let L be a regular language. Then there exists n ≥ 1 such that any w ∈ L with
|w | ≥ n can be written as w = xyz with

y 6= ε

|xy | ≤ n

xy iz ∈ L for all i ≥ 0

Trivial proof using the pigeonhole principle
Typical examples of non-regular languages: {anbn : n ≥ 0},
{ap : p is prime}, {anbncm : n,m ≥ 0}

CS 455/555 (S. D. Bruda) Fall 2020 11 / 11

