
CS 455/555: Computability theory

Stefan D. Bruda

Fall 2020

THE CHURCH THESIS

It has been shown that all the formalisms that model general
computations (primitive recursive functions, the lambda calculus,
unrestricted grammars, the random access machine, etc.) are equivalent
with each other
They must thus be equivalent to the general notion of computation—the
Church thesis, proposed by. . . Stephen Kleene (a student of Alonzo
Church) in 1943
We can thus analyze algorithms, computations, and problems
exclussively in terms of Turing machines
An algorithm is a Turing machine that decides a language (problem)
A program would then be a Turing machine that semidecide a
language/problem
How about a computer? This is going to be also a Turing machine

Such a machine will take as input another Turing machine and will execute it
on an input also provided
We call it the Universal Turing machine
We need to uniformly encode Turing machines and their input strings

CS 455/555 (S. D. Bruda) Fall 2020 1 / 10

ENCODING TURING MACHINES

Choose a uniform encoding for states, such as q〈n〉, where 〈n〉 is a
binary representation of fixed length

Make it long enough so that we have room for all the states
Also specify specific encodings for the initial state and the halt state, e.g.
encpsq “ q00...0, encphq “ q11...1

Choose an encoding for tape symbols such as a〈n〉, with 〈n〉 as above
(and long enough to include all the tape symbols and also L and R)

Identify the special symbols #, §, L, and R as being, say the first four
symbols in the encodings
For example this is an acceptable encoding of inputs over {a, b}:

encp#q “ a000 encp§q “ a001 encpLq “ a010
encpRq “ a011 encpaq “ a100 encpbq “ a101

A transition can easily be encoded; for example:
encppq,a,h,Lqq “ q010a100q111a010

A whole transition relation is then encoded as the concatenation of all the
transitions therein

Given the conventions above we have
encpMq “ encp∆q for any M “ pK ,Σ,∆, s, {h}q

CS 455/555 (S. D. Bruda) Fall 2020 2 / 10

THE UNIVERSAL TURING MACHINE

The universal Turing machine is a machine U such that
UpencpMq#encpwqq “ encpMpwqq for any Turing machine M and input w
for M
Computation easily accomplished with three tapes:

First tape is the working tape: U will move encpMq onto the second tape and
the first tape then contains encpwq as manipulated by M
The head of the first tape keeps scanning the prefix a of the symbol currently
scanned by the head of M
The second tape will contain encpMq copied from the first tape at the
beginning and does not change
The third tape is initialized with q00...0 (the encoding of the initial state) and
will keep storing the current state
A step of M is simulated by U as follows:

1 U finds the current symbol (first tape) and the current state (third tape)
2 U guesses nondeterministically the transition (second tape) to be applied
3 The transition is applied (the first and third tapes are changed accordingly)
4 If the third tape is q11...1 (the halt state) then U halts, otherwise it repeats from

Step 1

CS 455/555 (S. D. Bruda) Fall 2020 3 / 10



RECURSIVE VERSUS RECURSIVLEY ENUMERABLE

LANGUAGES

Are recursive languages the same as recursively enumerable languages?
If so, all problems that can be formulated computationally admit
algorithms (are solvable computationally)
Unfortunately this turns out not to be the case
Simple diagonalization argument. Crux:

Let haltpP, xq = halts iff P halts on input x
Let diagonalpxq = if haltpx , xq then diagonalpxq else halt
Does diagonal halt?

CS 455/555 (S. D. Bruda) Fall 2020 4 / 10

THE HALTING PROBLEM

The halting problem is represented by the language

H “ {encpMq#encpwq : M halts on w}

H is recursively enumerable, for indeed it is semidecided by U
Suppose H is recursive and decided by MH

If so, then all the recursively enumerable languages are recursive!
Indeed, consider a language L semidecided by M; for each string w we
produce encpMq#encpwq and we launch MH , thus deciding whether w P L
H is complete for recursively enumerable languages

Let now H1 “ {encpMq : M halts on encpMq}
H is recursive then H1 is also recursive
Indeed, for any encpMq received as input we duplicate it (thus obtaining
encpMq#encpMq) and then we launch MH

Since H1 is recursive then so is H1 (recursive languages are closed under
¨ )

CS 455/555 (S. D. Bruda) Fall 2020 5 / 10

THE HALTING PROBLEM (CONT’D)

H1 “ {w : either w is not the encoding of a Turing machine, or
w “ encpMq such that M does not halt on input w}
Since H1 is recursive then it is also recursively enumerable
Let M˚ be the Turing machine that semidecides H1

Is it the case that encpM˚q P H1?
From the definition of H1: encpM˚q P H1 iff M˚ does not halt on encpM˚q
From the definition of M˚: encpM˚q P H1 iff M˚ accepts (halts on) encpM˚q
Contradiction!

Theorem
Recursive languages are a strict subset of recursively enumerable languages

Theorem
Recursively enumerable languages are not closed under complementation

H1 is recursively enumerable (decided by U) but H1 is not

CS 455/555 (S. D. Bruda) Fall 2020 6 / 10

REDUCTIONS

There are more recursively enumerable languages/problems that are not
recursive
These are easily found via reductions
Let L1,L2 P Σ˚; a reduction from L1 to L2 is the recursive function
τ : Σ˚ Ñ Σ˚ such that w P L1 iff τpwq P L2

Theorem
If L1 is not recursive and there exists a reduction from L1 to L2 then L2 is not
recursive

Suppose L2 is recursive so that M2 decides L2

Let Mτ be the Turing machine that computes τ , the reduction from L1 to L2

Then the machine MτM2 decides L1, a contradiction

To prove that a certain language L is not recursive all we need is to
provide a reduction from a known non-recursive language to L

CS 455/555 (S. D. Bruda) Fall 2020 7 / 10



MORE UNDECIDABLE PROBLEMS

A whole bunch of them, check out Sections 5.4, 5.5, and 5.6 (the latter
very important)
Most interesting problems about Turing machines turn out to be
undecidable

Theorem (Rice’s theorem)
Let P be a property over Turing machines. If P is

non-trivial (there exists at least one Turing machine that has P and at least one
Turing machine that does not have it) and

extensional (if a Turing machine that decides L has P then all the Turing machines
that decide L have P)

then P is undecidable

Proof on p. 270

CS 455/555 (S. D. Bruda) Fall 2020 8 / 10

SOME UNDECIDABLE PROBLEMS ABOUT TURING

MACHINES

1 Does M halt on w?
2 Does M halt on an empty tape?

Reduction from H “ {encpMq#encpwq : M halts on w} to
L “ {encpMq : M halts on ε}
Given M, w “ w1w2 ¨ ¨ ¨wn, the reduction produces Mw which starts with an
empty tape, writes w and launches M, i.e., Mw “ w1Rw2R ¨ ¨ ¨wnRM

3 Is there any input string on which M halts?
Similar reduction from H
Given M, w , the reduction produces Mw that erases w from the input tape,
guesses nondeterministically a string x and launches M (on x)

4 Given a Turing machine M that semidecides a language L, is L regular?
context-free? recursive?

5 Given a Turing machine M that semidecides a language L, is L empty?
6 Given two Turing machines, do they decide the same language?

CS 455/555 (S. D. Bruda) Fall 2020 9 / 10

REMINDER: PROPERTIES OF SOLVABLE PROBLEMS

Algorithm = decides a recursive language
Solvable (decidable) problem = recursive language
Problem in general = recursively enumerable language
A recursively enumerable language L is recursive iff both L and L are
recursively enumerable
Recursive languages are closed under complementation
Recursively enumerable languages are not closed under
complementation

CS 455/555 (S. D. Bruda) Fall 2020 10 / 10


