THE CHURCH THESIS

@ It has been shown that all the formalisms that model general
computations (primitive recursive functions, the lambda calculus,
unrestricted grammars, the random access machine, etc.) are equivalent

- with each other

CS 455/555: CompUtablllty theory @ They must thus be equivalent to the general notion of computation—the

Church thesis, proposed by. .. Stephen Kleene (a student of Alonzo

Church) in 1943

Stefan D. Bruda @ We can thus analyze algorithms, computations, and problems

exclussively in terms of Turing machines

@ An algorithm is a Turing machine that decides a language (problem)
Fall 2020 @ A program would then be a Turing machine that semidecide a
language/problem
@ How about a computer? This is going to be also a Turing machine

@ Such a machine will take as input another Turing machine and will execute it
on an input also provided

o We call it the Universal Turing machine

o We need to uniformly encode Turing machines and their input strings
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ENCODING TURING MACHINES THE UNIVERSAL TURING MACHINE

@ Choose a uniform encoding for states, such as g(n), where (n) is a
binary representation of fixed length

o Make it long enough so that we have room for all the states

@ The universal Turing machine is a machine U such that
U(enc(M)#enc(w)) = enc(M(w)) for any Turing machine M and input w

o Also specify specific encodings for the initial state and the halt state, e.g. for M
enc(s) = qo0...0,enc(h) =ql11...1 @ Computation easily accomplished with three tapes:
@ Choose an encoding for tape symbols such as a(n), with (n) as above o First tape is the working tape: U will move enc(M) onto the second tape and
(and long enough to include all the tape symbols and also L and R) the first tape then contains enc(w) as manipulated by M

e The head of the first tape keeps scanning the prefix a of the symbol currently
scanned by the head of M
@ The second tape will contain enc(M) copied from the first tape at the

o |dentify the special symbols #, », L, and R as being, say the first four
symbols in the encodings
o For example this is an acceptable encoding of inputs over {a, b}:

enc(#) = a000 enc(») = ao0l enc(l) = a010 beginning and does not change . o
enc(R) = aoll enc(a) = al00 encb) = alol e The third tape is initialized with g00...0 (the encoding of the initial state) and
" . ) . will keep storing the current state
@ A transition can easily be encoded; for example: o Astep of M is simulated by U as follows:
enc((q7 a, h, L)) =q010a100q111a010 @ U finds the current symbol (first tape) and the current state (third tape)
@ A whole transition relation is then encoded as the concatenation of all the @ U guesses nondeterministically the transition (second tape) to be applied
transitions therein e The transition is applied (the first and third tapes are changed accordingly)
. . @ If the third tape is g11...1 (the halt state) then U halts, otherwise it repeats from
@ Given the conventions above we have Step 1

enc(M) =enc(A) forany M = (K, X, A, s,{h})
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RECURSIVE VERSUS RECURSIVLEY ENUMERABLE ydir THE HALTING PROBLEM
s

LANGUAGES +

@ The halting problem is represented by the language

H = {enc(M)#enc(w) : M halts on w}

@ Are recursive languages the same as recursively enumerable languages? @ His recursively enumerable, for indeed it is semidecided by U
@ If so, all problems that can be formulated computationally admit @ Suppose H is recursive and decided by My
algorithms (are solvable computationally) o If so, then all the recursively enumerable languages are recursive!

Unfortunatelv this t t not to be th o Indeed, consider a language L semidecided by M; for each string w we
@ Uniortunately this turns out not 1o be the case produce enc(M)#enc(w) and we launch My, thus deciding whether w e L
@ Simple diagonalization argument. Crux: o His complete for recursively enumerable languages

o Let halt(P, x) = halts iff P halts on input x @ Let now H; = {enc(M) : M halts on enc(M)}
o Let diagonal(x) = if halt(x, x) then diagonal(x) else halt o His recursive then Hi is also recursive

@ Does diagonal hait? @ Indeed, for any enc(M) received as input we duplicate it (thus obtaining
enc(M)#enc(M)) and then we launch My

@ Since H; is recursive then so is Hy (recursive languages are closed under

)
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THE HALTING PROBLEM (CONT’D) REDUCTIONS

@ H; = {w : either w is not the encoding of a Turing machine, or
w = enc(M) such that M does not halt on input w} @ There are more recursively enumerable languages/problems that are not

@ Since H; is recursive then it is also recursively enumerable recursive

@ Let M* be the Turing machine that semidecides H ® These are easily found via reductions
o Is it the case that enc(M*) € Hy? @ Let Ly, L, € *; areduction from L; to L, is the recursive function

- J— . * * H
o From the definition of H;: enc(M*) € H; iff M* does not halt on enc(M*) i3~ 2Fsuchthatwe Ly iff r(w) € Lo

e From the definition of M*: enc(M*) e H; iff M* accepts (halts on) enc(M*)
e Contradiction!

If Ly is not recursive and there exists a reduction from L to Lo then Ls is not

Recursive languages are a strict subset of recursively enumerable languages e Suppose L, is recursive so that M, decides L,

o Let M; be the Turing machine that computes 7, the reduction from L, to L,

e Then the machine M, M. decides L4, a contradiction
Recursively enumerable languages are not closed under complementation @ To prove that a certain language L is not recursive all we need is to
provide a reduction from a known non-recursive language to L

@ H; is recursively enumerable (decided by U) but Hy is not
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SOME UNDECIDABLE PROBLEMS ABOUT TURING

MORE UNDECIDABLE PROBLEMS

ag%g\

MACHINES P

@ A whole bunch of them, check out Sections 5.4, 5.5, and 5.6 (the latter

very important) @ Does M halt on w?
@ Most interesting problems about Turing machines turn out to be © Does M halt on an empty tape?
undecidable o Reduction from H = {enc(M)#enc(w) : M halts on w} to
: L = {enc(M) : M halts on ¢}
Theorem (Rice’s theorem) o Given M, w = wywz - - - Wy, the reduction produces M, which starts with an

empty tape, writes w and launches M, i.e., M, = wsRw2R - - - w,RM
@ Is there any input string on which M halts?

@ Similar reduction from H
o Given M, w, the reduction produces M, that erases w from the input tape,

Let P be a property over Turing machines. If P is

e non-trivial (there exists at least one Turing machine that has P and at least one
Turing machine that does not have it) and

e extensional (if a Turing machine that decides L has P then all the Turing machines guesses nondeterministically a string x and launches M (on x)
h ide L have P . . . — .
that decide L have P) © Given a Turing machine M that semidecides a language L, is L regular?
then P is undecidable ) context-free? recursive?
e Proof on p. 270 @ Given a Turing machine M that semidecides a language L, is L empty?

@ Given two Turing machines, do they decide the same language?
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REMINDER: PROPERTIES OF SOLVABLE PROBLEMS

@ Algorithm = decides a recursive language
@ Solvable (decidable) problem = recursive language
@ Problem in general = recursively enumerable language

@ A recursively enumerable language L is recursive iff both L and L are
recursively enumerable

@ Recursive languages are closed under complementation

@ Recursively enumerable languages are not closed under
complementation
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