CS 455/555: Computability theory

Stefan D. Bruda

Fall 2020

ENCODING TURING MACHINES

- Choose a uniform encoding for states, such as $q\langle n\rangle$, where $\langle n\rangle$ is a binary representation of fixed length
 - Make it long enough so that we have room for all the states
 - Also specify specific encodings for the initial state and the halt state, e.g. enc(s) = q00...0, enc(h) = q11...1
- Choose an encoding for tape symbols such as $a\langle n \rangle$, with $\langle n \rangle$ as above (and long enough to include all the tape symbols and also L and R)
 - Identify the special symbols #, ▶, L, and R as being, say the first four symbols in the encodings
 - For example this is an acceptable encoding of inputs over $\{a, b\}$:

```
enc(\#) = a000 \quad enc(*) = a001 \quad enc(L) = a010

enc(R) = a011 \quad enc(a) = a100 \quad enc(b) = a101
```

• A transition can easily be encoded; for example:

$$enc((q, a, h, L)) = q010a100q111a010$$

- A whole transition relation is then encoded as the concatenation of all the transitions therein
- Given the conventions above we have

$$enc(M) = enc(\Delta)$$
 for any $M = (K, \Sigma, \Delta, s, \{h\})$

CS 455/555 (S. D. Bruda) Fall 2020 2 / 10 CS 455/555 (S. D. Bruda)

THE CHURCH THESIS

- It has been shown that all the formalisms that model general computations (primitive recursive functions, the lambda calculus, unrestricted grammars, the random access machine, etc.) are equivalent with each other
- They must thus be equivalent to the general notion of computation—the Church thesis, proposed by... Stephen Kleene (a student of Alonzo Church) in 1943
- We can thus analyze algorithms, computations, and problems exclussively in terms of Turing machines
- An algorithm is a Turing machine that decides a language (problem)
- A program would then be a Turing machine that semidecide a language/problem
- How about a computer? This is going to be also a Turing machine
 - Such a machine will take as input another Turing machine and will execute it on an input also provided
 - We call it the Universal Turing machine
 - We need to uniformly encode Turing machines and their input strings

CS 455/555 (S. D. Bruda) Fall 2020 1 / 10

THE UNIVERSAL TURING MACHINE

- The universal Turing machine is a machine U such that U(enc(M)#enc(w)) = enc(M(w)) for any Turing machine M and input w for M
- Computation easily accomplished with three tapes:
 - First tape is the working tape: U will move enc(M) onto the second tape and the first tape then contains enc(w) as manipulated by M
 - The head of the first tape keeps scanning the prefix a of the symbol currently scanned by the head of M
 - The second tape will contain enc(M) copied from the first tape at the beginning and does not change
 - The third tape is initialized with *q*00...0 (the encoding of the initial state) and will keep storing the current state
 - A step of M is simulated by U as follows:
 - U finds the current symbol (first tape) and the current state (third tape)
 - U guesses nondeterministically the transition (second tape) to be applied
 The transition is applied (the first and third tapes are changed accordingly)
 - If the third tape is *q*11...1 (the halt state) then *U* halts, otherwise it repeats from Step 1

CS 455/555 (S. D. Bruda) Fall 2020

RECURSIVE VERSUS RECURSIVLEY ENUMERABLE LANGUAGES

THE HALTING PROBLEM

- - $H = \{\operatorname{enc}(M) \# \operatorname{enc}(w) : M \text{ halts on } w\}$
 - H is recursively enumerable, for indeed it is semidecided by U
 - Suppose *H* is recursive and decided by *M_H*
 - If so, then all the recursively enumerable languages are recursive!
 - Indeed, consider a language L semidecided by M; for each string w we produce enc(M)#enc(w) and we launch M_H , thus deciding whether $w \in L$
 - H is complete for recursively enumerable languages

The halting problem is represented by the language

- Let now $H_1 = \{ enc(M) : M \text{ halts on } enc(M) \}$
 - H is recursive then H_1 is also recursive
 - Indeed, for any enc(M) received as input we duplicate it (thus obtaining enc(M)#enc(M)) and then we launch M_H
- Since H_1 is recursive then so is $\overline{H_1}$ (recursive languages are closed under $\overline{\cdot}$)

• Are recursive languages the same as recursively enumerable languages?

- If so, all problems that can be formulated computationally admit algorithms (are solvable computationally)
- Unfortunately this turns out not to be the case
- Simple diagonalization argument. Crux:
 - Let halt(P, x) = halts iff P halts on input x
 - Let diagonal(x) = if halt(x, x) then diagonal(x) else halt
 - Does diagonal halt?

CS 455/555 (S. D. Bruda)

11 2020

4/10

CS 455/555 (S. D. Bruda)

T-II 0000

/ 10

THE HALTING PROBLEM (CONT'D)

- $\overline{H_1} = \{ w : \text{ either } w \text{ is not the encoding of a Turing machine, or } w = \text{enc}(M) \text{ such that } M \text{ does not halt on input } w \}$
- Since $\overline{H_1}$ is recursive then it is also recursively enumerable
- Let M^* be the Turing machine that semidecides $\overline{H_1}$
- Is it the case that $enc(M^*) \in \overline{H_1}$?
 - From the definition of $\overline{H_1}$: enc $(M^*) \in \overline{H_1}$ iff M^* does not halt on enc (M^*)
 - From the definition of M^* : enc $(M^*) \in \overline{H_1}$ iff M^* accepts (halts on) enc (M^*)
 - Contradiction!

Theorem

Recursive languages are a strict subset of recursively enumerable languages

Theorem

Recursively enumerable languages are not closed under complementation

• H_1 is recursively enumerable (decided by U) but $\overline{H_1}$ is not

REDUCTIONS

- There are more recursively enumerable languages/problems that are not recursive
- These are easily found via reductions
- Let $L_1, L_2 \in \Sigma^*$; a reduction from L_1 to L_2 is the recursive function $\tau : \Sigma^* \to \Sigma^*$ such that $w \in L_1$ iff $\tau(w) \in L_2$

Theorem

If L_1 is not recursive and there exists a reduction from L_1 to L_2 then L_2 is not recursive

- Suppose L₂ is recursive so that M₂ decides L₂
- Let M_{τ} be the Turing machine that computes τ , the reduction from L_1 to L_2
- Then the machine $M_{\tau}M_2$ decides L_1 , a contradiction
- To prove that a certain language *L* is not recursive all we need is to provide a reduction from a known non-recursive language to *L*

CS 455/555 (S. D. Bruda) Fall 2020 6 / 10 CS 455/555 (S. D. Bruda) Fall 2020 7 / 10

MORE UNDECIDABLE PROBLEMS

- A whole bunch of them, check out Sections 5.4, 5.5, and 5.6 (the latter very important)
- Most interesting problems about Turing machines turn out to be undecidable

Theorem (Rice's theorem)

Let P be a property over Turing machines. If P is

- non-trivial (there exists at least one Turing machine that has P and at least one Turing machine that does not have it) and
- extensional (if a Turing machine that decides L has P then all the Turing machines that decide L have P)

then P is undecidable

Proof on p. 270

CS 455/555 (S. D. Bruda) Fall 2020 8

₽.ê

REMINDER: PROPERTIES OF SOLVABLE PROBLEMS

- Algorithm = decides a recursive language
- Solvable (decidable) problem = recursive language
- Problem in general = recursively enumerable language
- A recursively enumerable language L is recursive iff both L and \overline{L} are recursively enumerable
- Recursive languages are closed under complementation
- Recursively enumerable languages are not closed under complementation

CS 455/555 (S. D. Bruda) Fall 2020 10 / 10

SOME UNDECIDABLE PROBLEMS ABOUT TURING MACHINES

- Does M halt on w?
- Does M halt on an empty tape?
 - Reduction from H = {enc(M)#enc(w) : M halts on w} to
 L = {enc(M) : M halts on ε}
 - Given M, $w = w_1 w_2 \cdots w_n$, the reduction produces M_w which starts with an empty tape, writes w and launches M, i.e., $M_w = w_1 R w_2 R \cdots w_n R M$
- Is there any input string on which M halts?
 - Similar reduction from H
 - Given M, w, the reduction produces M_w that erases w from the input tape, guesses nondeterministically a string x and launches M (on x)
- Given a Turing machine M that semidecides a language L, is L regular? context-free? recursive?
- ⑤ Given a Turing machine M that semidecides a language L, is L empty?
- Given two Turing machines, do they decide the same language?

CS 455/555 (S. D. Bruda) Fall 2020 9 / 10