
CS 455/555: Complexity theory

Stefan D. Bruda

Fall 2020

TIME MATTERS

For some f : NÑ N, a Turing machine M “ pK ,Σ,∆, s, {h}q is f -time
bounded iff for any w P Σ˚: there is no configuration C such that
ps,#w#q $f p|w |q`1

M C
M is polynomially (time) bounded iff M is p-time bounded for some
polynomial p
L Ď Σ˚ is polynomially decidable iff there is a deterministic, polynomially
bounded Turing machine that decides L ñ complexity class P

P is the class of exactly all the polynomially decidable languages
P is closed under complementation
There are recursive languages that are not in P (page 277)

E “ {encpMq#encpwq : M accepts w after at most 2|w| steps}
P (as well as subsequent complexity classes) are based on worst-case
analysis

Complexity class NP: the class of exactly all the languages decided by
nondeterministic, polynomially bounded Turing machines
Complexity class EXP: exactly all the languages decided by
exponentially-bounded, deterministic Turing machines
P Ď NP Ď EXP

CS 455/555 (S. D. Bruda) Fall 2020 1 / 19

ALTERNATIVE DEFINITION OF NP : CERTIFICATES

L P Σ˚; Σ˚ is polynomially balanced iff there exists a polynomial p such
that @ x ; y P L : |y | ď pp|x |q
L P NP iff there exists a polynomially balanced language L1 such that

1 L1 P P, and
2 L “ {x P Σ˚ : D y P Σ˚ : x ; y P L1}

L1 is the language of succinct certificates for L (every x P L has a succinct
certificate y)
An NP problem has solutions that are easy to check

CS 455/555 (S. D. Bruda) Fall 2020 2 / 19

LANGUAGES? PROBLEMS?

Given some computational problem that requires certain resource (time)
bounds to solve, it is generally easy to find a language that requires the
same resource bounds to decide

Sometime (but not always) finding an algorithm for deciding the language
immediately implies an algorithm for solving the problem

Traveling salesman (TSP): Given n ě 2, a matrix pdijq1ďi,jďn with dij ą 0
and dii “ 0, find a permutation π of {1,2, . . . ,n} such that cpπq, the cost
of π is minimal, where cpπq “ dπ1π2 ` dπ2π3 ` ¨ ¨ ¨ ` dπn´1πn ` dπnπ1

TSP the language (take 1): {ppdijq1ďi,jďn,Bq : n ě 2,B ě 0, there exists a
permutation π such that cpπq ď B}
TSP the language (take 2), or the Hamiltonian graphs: Exactly all the graphs
that have a (Hamiltonian) cycle that goes through all the vertices exactly
once
Note: A cycle that uses all the edges exactly once is Eulerian; a graph G is
Eulerian iff

1 There is a path between any two vertices that are not isolated, and
2 Every vertex has an in-degree equal to its out-degree

CS 455/555 (S. D. Bruda) Fall 2020 3 / 19

LANGUAGES? PROBLEMS? (CONT’D)

Clique: Given an undirected graph G “ pV ,Eq, find the maximal set
C Ď V such that @ vi , vj P C : pvi , vjq P E (C is a clique of G)

Clique, the language: {pG “ pV ,Eq,K q : K ě 2 : there exists a clique C of V
such that |C| ě K}

SAT: Fix a set of variables X “ {x1, x2, . . . , xn} and let
X “ {x1, x2, . . . , xn}

An element of X Y X is called a literal
A formula (or set/conjunction of clauses) is α1 ^ α2 ^ ¨ ¨ ¨ ^ αm where
αi “ xa1 _ xa2 _ ¨ ¨ ¨ _ xak , 1 ď i ď m, and xai P X Y X
An interpretation (or truth assignment) is a function I : X Ñ {J,K}
A formula F is satisfiable iff there exists an interpretation under which F
evaluates to J.
SAT “ {F : F is satisfiable }

2-SAT, 3-SAT are variants of SAT (with the number of literals in every
clause restricted to a maximum of 2 and 3, respectively)

CS 455/555 (S. D. Bruda) Fall 2020 4 / 19

2-SAT

Theorem
2-SAT P P

Algorithm purgepF , xi P X q: Erase from F xi , erase from F all the clauses
that contain xi

Algorithm satisfypF ,X q:
1 For every singleton clause xi : Set Ipxiq “ J, purgepF , xiq
2 For every singleton clause xi : Set Ipxiq “ K, purgepF , xiq
3 If we have an empty clause then report F as unsatisfiable and stop
4 Pick xi P X , set X to Xz{xi}, and copy F into F 1
5 Set Ipxiq “ J, purgepF , xiq
6 If we have an empty clause, then

1 Set Ipxi q “ K, purgepF 1, xi q
2 If we have an empty clause then report F as unsatisfiable and stop
3 Set F to F 1

7 If x “ H then report F as satisfiable and stop, otherwise repeat from Step 4

CS 455/555 (S. D. Bruda) Fall 2020 5 / 19

REDUCTIONS, REVISITED

The general idea of reductions:
w’ (in L’?)

(L L’)

τ M’

(for L’)

M (for L)

Y/Nw

(in L?)

Reductions can be used in proofs by contradiction:
If L does not have property P and reduction τ from L to L1 preserves P
Then L1 does not have P

Example: Turing reductions and undecidable problems

CS 455/555 (S. D. Bruda) Fall 2020 6 / 19

POLYNOMIAL REDUCTIONS

A function f : Σ˚ Ñ Σ˚ is polynomially computable iff there exists a
polynomially time bounded, deterministic Turing machine that computes it
Let L1,L2 P Σ˚; the function τ : Σ˚ Ñ Σ˚ is a polynomial reduction if it is
polynomially computable, and @ x P Σ˚ : x P L1 iff τpxq P L2

Polynomial reductions show that a problem is not harder to solve than
another within a polynomial-time factor

Lemma
L1 is polynomially reducible to L2 and L2 P P implies L1 P P

Theorem
Polynomial reductions are closed under (functional) composition

Direct, constructive proof

CS 455/555 (S. D. Bruda) Fall 2020 7 / 19

NP -COMPLETE PROBLEMS

A problem L is NP-hard iff for every language L1 P NP there exists a
polynomial reduction from L1 to L
A problem L is NP-complete iff L is NP-hard and L P NP

Theorem
Let L be some NP-complete problem; then P “ NP iff L P P

ñ: L is NP-complete, so L P NP; however, P “ NP and so L P P
ð: L P P, so L is decided by a polynomially time bounded deterministic
machine M

For any L1 P NP we have a polynomial reduction τ from L to L1, decided by a
polynomially time bounded, deterministic machine Mτ
Then L1 is decided by the deterministic, polynomially time bounded machine
MτM

CS 455/555 (S. D. Bruda) Fall 2020 8 / 19

REDUCTION EXAMPLE

Reduction from Hamiltonian cycle to SAT
Graph G given as adjacency matrix: G “ V ˆ V , V “ {1, 2, . . . , n}
G has a Hamiltonian cycle iff τpGq is satisfiable

Variables: xij , 1 ď i , j ď n; xij “ J iff vertex i is number j in the
Hamiltonian cycle
Clauses: need to specify that xij represent a permutation (or bijection)
over V ; need then to specify that all the vertices in the cycle are actually
connected

1 at least one vertex is number j @ 1 ď j ď n : x1j _ x2j _ ¨ ¨ ¨ _ xnj
2 no vertex can be in two places at once @ 1 ď i , j , k ď n, j ‰ k : xij _ xik
3 every vertex must be in the cycle @ 1 ď i ď n : xi1 _ xi2 _ ¨ ¨ ¨ _ xin
4 a place in the cycle can only have one vertex
@ 1 ď i , j , k ď n, i ‰ k : xij _ xkj

5 The permutation given by xij is a Hamiltonian cycle For all i and k such
that pi , kq R G and assuming that xkn`1 “ xk1, we add xij _ xkj`1

CS 455/555 (S. D. Bruda) Fall 2020 9 / 19

REDUCTION EXAMPLE (CONT’D)

We have Opn3q clauses with at most Opnq literals each
Each clause may depend on G and n but nothing else
The whole set is clearly polynomially computable, as desired
Remains to prove that G has a Hamiltonian cycle iff τpGq is satisfiable

Suppose that some interpretation I satisfies τpGq
Then for each i exactly one Ipxijq is J and for each j exactly one Ipxijq is J
(because of 1-4)
This goes both ways
if

xij _ xkj`1 is true whenever pi, jq R G
Whenever i “ πj and k “ πj`1 we have Ipxij q “ J and Ipxkj`1q “ J
Therefore the clause xij _ xkj`1 if false, so (i,k) must be an edge in G

only if
Let π be a Hamiltonian cycle
We then set Ipxij q “ J iff j “ πi , which makes τpGq true

CS 455/555 (S. D. Bruda) Fall 2020 10 / 19

NP -COMPLETENESS THEORY IN A NUTSHELL

Are there NP-complete problems at all?
Yes, SAT is one (cf. Stephen Cook, 1971)

The first is the hard one: we have to show that every problem in NP
reduces to our problem
Then in order to find other NP-complete problems all we need to do is to
find problems such that some problem already known to be
NP-complete reduces to them

This works because polynomial reductions are closed under composition =
are transitive

Then it is apparently easy to use the theorem stated earlier:
Let L be some NP-complete problem; then P “ NP iff L P P

CS 455/555 (S. D. Bruda) Fall 2020 11 / 19

TILING KITCHEN FLOORS

Tiling system: D “ pD,d0,H,V q
D is a finite set of tiles
d0 P D is the initial corner tile
H,V P D ˆ D are the horizontal and vertical tiling restrictions

Tiling: f : Ns ˆNs Ñ D such that
f p0, 0q “ d0

@ 0 ď m ă s, 0 ď n ă s ´ 1 : pf pm, nq, f pm, n ` 1qq P V
@ 0 ď m ă s ´ 1, 0 ď n ă s : pf pm, nq, f pm ` 1, nqq P H

The bounded tiling problem:
Given a tiling system D, a positive integer s and an initial tiling f0 : Ns Ñ D
Find whether there exists a tiling function f that extends f0

CS 455/555 (S. D. Bruda) Fall 2020 12 / 19

BOUNDED TILING IS NP -COMPLETE

We need to find reductions from all problems in NP to bounded tiling
The only thing in common to all the NP problems is that each of them is
decided by a nondeterministic, polynomially bounded Turing machine
We therefore find a reduction from an arbitrary such a machine to bounded
tiling

We find a tiling system such that each row in the tiling corresponds to one
configuration of the given Turing machine

@a P Σ :

a

a

@ pq,a,p,bq P
∆, b P Σ :

pp, bq

pq, aq

#
#

@ pq,a,p,Rq P ∆ :

a
Rp

pq, aq

pp, bq
Rp

b

@ pq,a,p,Lq P ∆ :

a
Lp

pq, aq

pp, bq
Lp

b

Initial tiling:

w1 w2 . . . wn ps,#q

CS 455/555 (S. D. Bruda) Fall 2020 13 / 19

SAT IS NP -COMPLETE

1 SAT P NP
We nondeterministically guess an interpretation and we check that the
interpretation satisfies the formula
Both of these take linear time

2 SAT is NP-hard
By reduction of bounded tiling to SAT
Consider variables xnmd standing for “tile d is at position pn,mq in the tiling”
Construct clauses such that xnmd “ J iff f pm, nq “ d
We first specify that we have a function:

each position has at least one tile: @ 0 ď m, n ď s : xmnd1 _ xmnd2 _ ¨ ¨ ¨
no more than one tile in a given position: @ 0 ď m, n ď s, d ‰ d 1 : xmnd _ xmnd1

Then we specify the restrictions H and V :
pd , d 1q P D2zH ñ xmnd _ xm`1nd1 pd , d 1q P D2zV ñ xmnd _ xmn`1d1

In fact 3-SAT is also NP-complete

CS 455/555 (S. D. Bruda) Fall 2020 14 / 19

PROOF OF NP -COMPLETENESS

To show that a problem is NP-complete we need to show that
The problem is in NP

Construct a Turing machine, or find succinct certificates
Usually quite straightforward

The problem is NP-hard
Exhibit a polynomial reduction from a known NP-complete problem
Reduction can happen from any problem discussed in class and also from
any problem discussed in Sections 7.2 and 7.3 (take those problems as
solved exercises)
Make sure that you are comfortable with this way of thinking! There are
numerous solved exercises to make you comfortable

CS 455/555 (S. D. Bruda) Fall 2020 15 / 19

CLIQUE

3-SAT is NP-complete
Hint: any clause x1 _ x2 _ ¨ ¨ ¨ xn is logically equivalent with
px1 _ x2 _ x 12q ^ px 12 _ x3 _ x 13q ^ px 13 _ x4 _ x 14q ^ ¨ ¨ ¨ ^ px 1n´2 _ xn´1 _ xnq

CLIQUE “ {pG “ pV ,Eq, kq : k ě 2 : there exists a clique C of V , |C| “ k}
Membership in NP and 3-SAT being reducible to CLIQUE implies CLIQUE
is NP-complete

Start from φ “ C1 ^ C2 ^ ¨ ¨ ¨ ^ Ck , construct G “ pV ,Eq
Start with V “ H and E “ H
For each clause Cr “ l r

1 _ l r
2 _ l r

3 add vertices v r
1 , v r

2 , and v r
3 to V

Add pv r
i , v

s
j q to E whenever r ‰ s and l r

i is not the negation of ls
j (l r

i is and ls
j

are consistent)
Suppose that φ is satisfiable; then:

The interpretation that makes φ true makes at least one literal l ri per clause true
The vertex v r

i is connected to all the other vertices vs
j that make the other

clauses true (these are all consistent with each other)
So the vertices v r

i form a clique (of size k)
Suppose that G has a clique C of size k ; then:

C contains exactly one vertex per clause
Assigning J to every literal l ri for which v r

i P C is possible (all are consistent with
each other)
The assignment makes φ true so φ is satisfiable

CS 455/555 (S. D. Bruda) Fall 2020 16 / 19

VERTEX COVER

A vertex cover of G “ pV ,Eq is a set V 1 Ď V such that
pu, vq P E ñ u P V 1 _ v P V 1

VERTEX-COVER “ {pG “ pV ,Eq, kq : G has a vertex cover of size k}
Membership in NP and CLIQUE being reducible to VERTEX-COVER
implies VERTEX-COVER is NP-complete

Start from pG “ pV ,Eq, kq P CLIQUE
Compute G “ pV ,Eq where E “ pV ˆ V qzE (the complement of G)
Then pG, kq P CLIQUE iff pG, |V | ´ kq P VERTEX-COVER
Suppose that G has a clique C, |C| “ k ; then:

pu, vq R E means that u and v cannot be both in C
That is, V zC covers every edge pu, vq R E that is, every vertex pu, vq P E
Therefore V zC is a vertex cover for G (of size |V | ´ k)

Suppose that G has a vertex cover V 1 with |V 1| “ |V | ´ k ; then:
pu, vq P E ñ u P V 1 _ v P V 1
Contrapositive: u R V 1 ^ v R V 1 ñ pu, vq R E
That is, u P V zV 1 ^ v P V zV 1 ñ pu, vq P E
So V zV 1 is a clique of G (or size k)

CS 455/555 (S. D. Bruda) Fall 2020 17 / 19

OTHER ISSUES RELATED TO P AND NP

co-NP is the complement of NP (P P co-NP iff P P NP)
Thought to be different from NP
P Ď co-NP, P Ď NP
If P P co-NP, P P NP, and P P P then P is suspected not to be
NP-complete
Example: the language of composite numbers (aka the integer factorization
problem)

in NP and also in co-NP
suspected outside P
suspected outside NP-complete

co-NP-complete problems also definable
integer factorization also suspected outside co-NP-complete

CS 455/555 (S. D. Bruda) Fall 2020 18 / 19

FURTHER COMPLEXITY THEORY

Several complexity classes:
L Ď NL Ď P Ď NP Ď PSPACE “ NPSPACE

L stands for logarithmic space and NL for nondeterministic logarithmic
space

The only thing known: NL ‰ PSPACE
So at least one of the inclusions in between must be strict
But we do not know which ones are strict or not

Each inclusion has its own completeness theory, so we have P-complete
and PSPACE-complete problems

The reduction for each completeness theory comes from the inner class
Indeed, if we go higher then all problems in the given class become complete!

That is, P-complete problems are defined in terms of NL reductions,
whereas PSPACE-complete problems are defined in terms of NP
reductions

CS 455/555 (S. D. Bruda) Fall 2020 19 / 19

