
CS 455/555: Some Turing-complete formalisms

Stefan D. Bruda

Fall 2020

THE RANDOM ACCESS MACHINE

The Random Access Machine (RAM) consists of an unbounded set of
registers Ri , i ě 0, one register PC, and a control unit

The size (i.e. the number of bits) of a register is log n for an input of size n

The control unit executes a program consisting in a sequence of
numbered statements

In each work cycle the RAM executes one statement of the program; the
execution start with the first statement
The register PC specifies the number of the statement that is to be executed
The program halts when the program counter takes an invalid value (i.e.
there is no statement with the specified number in the program)

To “run” a RAM we need to
Specify a program
Define an initial values for the registers Ri , 0 ď i ă n (input)
The output is the content of the registers upon halting

CS 455/555 (S. D. Bruda) Fall 2020 1 / 19

RAM STATEMENTS

Statement Effect on registers Program counter
Ri Ð Rj Ri :“ Rj PC :“ PC ` 1
Ri Ð RrRj s Ri :“ RRj PC :“ PC ` 1
RrRj s Ð Ri RRj :“ Ri PC :“ PC ` 1
Ri Ð k Ri :“ k PC :“ PC ` 1
Ri Ð Rj ` Rk Ri :“ Rj ` Rk PC :“ PC ` 1
Ri Ð Rj ´ Rk Ri :“ max{0,Rj ´ Rk} PC :“ PC ` 1
GOTO m PC :“ m

IF Ri “ 0 GOTO m PC “
{

m if Ri “ 0
PC ` 1 otherwise

IF Ri ą 0 GOTO m PC “
{

m ifRi ą 0
PC ` 1 otherwise

The RAM is also called random-access Turing machine
Indeed, operation is identical to the original Turing machine except that
we do not spend time moving the head!
RAM = the formal basis of all the “imperative” programming languages
(C, Java, etc.)

CS 455/555 (S. D. Bruda) Fall 2020 2 / 19

LAMBDA NOTATION

Basic concept: function with no name = lambda-expression
peanuts Ñ chocolate-covered peanuts
raisins Ñ chocolate-covered raisins
ants Ñ chocolate-covered ants

Using the lambda calculus, a general “chocolate-covering” function (or
rather λ-expression) is described as follows:

λx .chocolate-covered x

Then we can get chocolate-covered ants by applying this function:

(λx .chocolate-covered x) ants Ñ chocolate-covered ants

CS 455/555 (S. D. Bruda) Fall 2020 3 / 19

LAMBDA NOTATION (CONT’D)

A general covering function:

λy .λx .y -covered x

The result of the application of such a function is itself a function:

(λy .λx .y -covered x) caramel Ñ λx .caramel-covered x

((λy .λx .y -covered x) caramel) ants Ñ (λx .caramel-covered x) ants
Ñ caramel-covered ants

Functions can also be parameters to other functions:

λf .(f) ants

(λf .(f) ants)λx .chocolate-covered x Ñ (λx .chocolate-covered x) ants
Ñ chocolate-covered ants

CS 455/555 (S. D. Bruda) Fall 2020 4 / 19

LAMBDA CALCULUS

The lambda calculus is a formal system designed to investigate function
definition, function application and recursion. It was introduced by Alonzo
Church and Stephen Kleene in the 1930s
We start with a countable set of identifiers, e.g.,
{a,b, c, . . . , x , y , z, x1, x2, . . .} and we build expressions using the
following rules:

LEXPRESSION Ñ IDENTIFIER
LEXPRESSION Ñ λIDENTIFIER.LEXPRESSION (abstraction)
LEXPRESSION Ñ pLEXPRESSIONqLEXPRESSION (combination)
LEXPRESSION Ñ pLEXPRESSIONq

In an expression λx .E , x is called a bound variable. A variable that is not
bound is a free variable

Syntactical sugar: Normally, no literal constants exist in lambda calculus;
In practice literals are used for clarity

CS 455/555 (S. D. Bruda) Fall 2020 5 / 19

REDUCTIONS

In lambda calculus, an expression pλx .EqF can be reduced to Erx{F s.
Erx{F s stands for the expression E , where F is substituted for all the
bound occurrences of x
In fact, there are three reduction rules:

α: λx .E reduces to λy .Erx{ys if y is not free in E (change of
variable)

β: pλx .EqF reduces to Erx{F s (functional application)
γ: λx .pFxq reduces to F if x is not free in F (extensionality)

Computation = given some expression, repeatedly apply these reduction
rules in order to bring that expression to its “irreducible” form (normal
form)

CS 455/555 (S. D. Bruda) Fall 2020 6 / 19

SAMPLE COMPUTATION

If-then-else:
true “ λx .λy .x
false “ λx .λy .y
if-then-else “ λa.λb.λc.ppaqbqc

pppif-then-elseqfalseqcaramelqchocolate
ñ pppλa.λb.λc.ppaqbqcqλx .λy .yqcaramelqchocolate
βñ ppλb.λc.ppλx .λy .yqbqcqcaramelqchocolate
βñ pλc.ppλx .λy .yqcaramelqcqchocolate
βñ ppλx .λy .yqcaramelqchocolate
βñ pλy .yqchocolate
βñ chocolate

CS 455/555 (S. D. Bruda) Fall 2020 7 / 19

MULTIPLE REDUCTIONS

Let ω “ ω ` 1
innermost (eager evaluation) outermost (lazy evaluation)

pλx .3qω ñ pdef. ωq
pλx .3qpω ` 1q

ñ pdef. ωq
pλx .3qpω ` 1` 1q

ñ pdef. ωq
pλx .3qpω ` 1` 1` 1q

...

pλx .3qω ñ pdef. λx .3q
3

Two terminating reductions are guaranteed to reach the same normal
form
If any reduction terminates then the outermost reduction is guaranteed to
terminate

CS 455/555 (S. D. Bruda) Fall 2020 8 / 19

FUNCTIONAL PROGRAMMING

Lambda-calculus = formal basis for all functional programming languages
(Haskell, ML, etc.)

Functional programming Ordinary programming
1. Identify problem Identify problem
2. Assemble information Assemble information
3. Write functions that define the problem Figure out solution
4. Coffee break Program solution
5. Encode problem instance as data Encode problem instance as data
6. Apply function to data Apply program to data
7. Mathematical analysis Debug procedural errors

CS 455/555 (S. D. Bruda) Fall 2020 9 / 19

FIRST-ORDER LOGIC (FOL): SYNTAX

Basic ingredients are Constants (KingJohn, 2, UB, . . .),
predicates (Brother , ą, . . .), functions (Sqrt , LeftLegOf , . . .), variables
(x , y , a, b, . . .), boolean operators (^, _, , ñ, ô), equality (“),
quantifiers (@, D)
Atomic sentence: predicatepterm1, . . . , termnq or term1 “ term2

Term: functionpterm1, . . . , termnq or constant or variable
Examples:

BrotherpKingJohn,RichardTheLionheartq
ą pLengthpLeftLegOf pRichardqq, LengthpLeftLegOf pKingJohnqqq

Complex sentences consist in atomic sentences joined together using
logical operators

Examples:

SiblingpKingJohn,Richardq ñ SiblingpRichard ,KingJohnq
ąp1, 2q _ ďp1, 2q
ąp1, 2q ^ ąp1, 2q

CS 455/555 (S. D. Bruda) Fall 2020 10 / 19

SEMANTICS OF FOL

Sentences are true with respect to a model and an interpretation
The model contains objects and relations among them
An interpretation is a triple I “ pD, φ, πq, where

D (the domain) is a nonempty set; elements of D are individuals
φ is a mapping that assigns to each constant an element of D
π is a mapping that assigns to each predicate with n arguments a function
p : Dn Ñ {True,False} and to each function of k arguments a function
f : Dk Ñ D

The interpretation specifies referents for
constant symbols Ñ objects (individuals)
predicate symbols Ñ relations
function symbols Ñ functional relations

An atomic sentence predicatepterm1, . . . , termnq is true iff the objects
referred to by term1, . . . , termn are in the relation referred to by predicate

CS 455/555 (S. D. Bruda) Fall 2020 11 / 19

SEMANTICS OF FOL: EXAMPLE

CS 455/555 (S. D. Bruda) Fall 2020 12 / 19

QUANTIFIERS

@ 〈variable〉 〈sentence〉
Everyone at Bishop’s is smart: @ x Attendspx ,Bishopsq ñ Smartpxq
@P is equivalent with the conjunction of instantiations of P

AttendspKingJohn,Bishopsq ñ SmartpKingJohnq
^ AttendspRichard ,Bishopsq ñ SmartpRichardq
^ AttendspBishops,Bishopsq ñ SmartpBishopsq
^ . . .

D 〈variable〉 〈sentence〉
Someone at Queen’s is smart: D x Attendspx ,Queensq ^ Smartpxq
D x P is equivalent to the disjunction of instantiations of P

AttendspKingJohn,Queensq ^ SmartpKingJohnq
_ AttendspRichard ,Queensq ^ SmartpRichardq
_ AttendspQueens,Queensq ^ SmartpQueensq
_ . . .

CS 455/555 (S. D. Bruda) Fall 2020 13 / 19

EQUALITY AND SUBSTITUTION

“ is a predicate with the predefined meaning of identity: term1 “ term2 is
true under a given interpretation iff term1 and term2 refer to the same
object
Suppose that we have a given set of statements known to be true
(knowledge base, KB) and we wonder whether the KB entails

Da Actionpaq
(i.e. is the sentence true given the KB)

Possible answer: Yes, {a{Shoot} Ð substitution (binding list)

Given a sentence S and a substitution σ, Sσ denotes the result of plugging σ
into S; e.g.,

S “ Smarterpx , yq
σ “ {x{Hillary , y{Bill}

Sσ “ SmarterpHillary ,Billq
We look for the most general substitution = unification algorithm

CS 455/555 (S. D. Bruda) Fall 2020 14 / 19

UNIFICATION

Unify: With: Substitution:
Dog Dog H

x y {x{y}
x A {x{A}

F px ,GpT qq F pMpHq,Gpmqq {x{MpHq,m{T}
F px ,GpT qq F pMpHq, tpmqq Failure!

F pxq F pMpHq,T pmqq Failure!
F px , xq F py ,Lpyqq Failure!

Equality, revised: “ is a predicate with the predefined meaning of identity:
term1 “ term2 is true under a given interpretation iff term1 and term2
unify with each other

CS 455/555 (S. D. Bruda) Fall 2020 15 / 19

FOL PROOFS

Inference rules: generalized resolution

α_ β1, β2 _ γ, Dσ β “ β1
σ ^ β “ β2

σ

ασ _ γσ
and generalized modus ponens

α1, . . . , αn, α1
1 ^ ¨ ¨ ¨ ^ α1

n ñ β,
Dσ pα1qσ “ pα1

1qσ ^ ¨ ¨ ¨ ^ pαnqσ “ pα1
nqσ

βσ

Application of inference rules: sound generation of new sentences from
old

Proof = a sequence of inference rule applications
Can use inference rules as operators in a standard search algorithm

CS 455/555 (S. D. Bruda) Fall 2020 16 / 19

PROOF BY CONTRADICTION

KB
Bob is a buffalo 1. BuffalopBobq
Pat is a pig 2. PigpPatq
Buffaloes outrun pigs 3. Buffalopxq ^ Pigpyq ñ Fasterpx , yq
Query
Is something outran by something else? Fasterpu, vq
Negated query: 4. Fasterpu, vq ñ l

(1), (2), and (3), σ “ {x{Bob, y{Pat} 5. FasterpBob,Patq
(4) and (5), σ “ {u{Bob, v{Pat} l

All the substitutions regarding variables appearing in the query are
typically reported (why?)

CS 455/555 (S. D. Bruda) Fall 2020 17 / 19

INFERENCE AND MULTIPLE SOLUTIONS

65

1

Ancestor(Ann,x) =>

Parent(Ann,x) => 55

Parent(Ann,b) Parent(b,x) => 2

Parent(Cecil,x) => 3

Ancestor(Ann,b) Ancestor(b,x) =>

{x/Bob}

{a/Ann,c/x}

{x/Bob}

{b/Cecil}

{x/Dave}

{x/Dave}

{a/Ann,b/x}

(1) ParentpAnn,Bobq
(2) ParentpAnn,Cecilq
(3) ParentpCecil ,Daveq
(4) ParentpCecil ,Ericq
(5) Parentpa,bq ñ Ancestorpa,bq
(6) Ancestorpa,bq ^ Ancestorpb, cq ñ Ancestorpa, cq

CS 455/555 (S. D. Bruda) Fall 2020 18 / 19

LOGIC PROGRAMMING

FOL = formal basis for all logic programming languages (Prolog, etc.)

Logic programming Ordinary programming
1. Identify problem Identify problem
2. Assemble information Assemble information
3. Coffee break Figure out solution
4. Encode information in KB Program solution
5. Encode problem instance as facts Encode problem instance as data
6. Ask queries Apply program to data
7. Find false facts Debug procedural errors

CS 455/555 (S. D. Bruda) Fall 2020 19 / 19

