
Concurrency

Stefan D. Bruda

CS 464/564, Fall 2023

DOING MORE THINGS SIMULTANEOUSLY

Concurrency can be achieved by multiprocessing and time-sharing
Best definition for concurrency: apparently simultaneous execution

Concurrency is fundamental to distributed computing
Multiprocessing: many machines run simultaneously many programs
Time-sharing: a single machine runs multiple programs in an interleaved
fashion (context switching)

Whether things run in a time-share fashion or on a multiprocessor
computer is immaterial; the observable behaviour is the same
The fundamental unit of computation: a process

A process consists of an address space and one (or more) threads of
execution (i.e., instruction pointers)
Each process receives a separate copy of all the variables (address space)
Each thread in a process have a copy of local variables (stack) but they all
share the rest of the address space (global variables, heap)

Concurrency (S. D. Bruda) CS 464/564, Fall 2023 1 / 8

PROCESS CREATION

We now create singly threaded
processes:
#include <iostream.h>

#include <sys/types.h>

#include <unistd.h>

int main (int argc, char** argv) {

int i;

int sum = 0;

fork();

for (int i=1; i<10000; i++) {

sum = sum + i;

}

cout << "\nI computed " << sum << "\n";

}

to To other side. get the
Why did the multithreaded chicken
cross the road?
other to side. To the get

Concurrency (S. D. Bruda) CS 464/564, Fall 2023 2 / 8

PARENTS AND CHILDREN

The call to fork() duplicates the current process; both processes
continue execution from the instruction following the call to fork()

The initial process is the parent, and the newly created copy is called a
child
Processes are identified in a Unix system by a unique process identifier
(or PID, unsigned integer)
fork() returns two different integers in the child and parent processes

In the child process fork() returns zero
In the parent process fork() returns the PID of the newly created child
So we can provide different code for the parent and the child, by surrounding
them in appropriate conditional statements

Concurrency (S. D. Bruda) CS 464/564, Fall 2023 3 / 8

DIVERGING PROCESSES

#include <iostream.h>

#include <sys/types.h>

#include <unistd.h>

int main (int argc, char** argv) {

int i; int sum = 0; int pid;

pid = fork();

for (int i=1; i<10000; i++) {

if (pid == 0)

cout << "+"; // child process

else

cout << "-"; // parent process

cout.flush();

sum = sum + i; // both processes

}

if (pid == 0)

cout << "\n[Child] I computed " << sum << "\n";

else

cout << "\n[Parent] I computed " << sum << "\n";

}

Concurrency (S. D. Bruda) CS 464/564, Fall 2023 4 / 8

CHILDREN DOING COMPLETELY DIFFERENT STUFF

The call execve replaces completely the current process with another
executable

The arguments are the name of the command to execute, then two
null-terminated arrays of strings containing the command line arguments
and the environment, similar to the ones received by the function main

Suppose now that we want to run an external command (so we use
execve), but also we want to continue the execution of the original
program
We use a combination of fork and execve:

int childp = fork();

if (childp == 0) { // child

execve(command, argv, envp);

}

else { // parent

// code that continues our program

}

Concurrency (S. D. Bruda) CS 464/564, Fall 2023 5 / 8

KNOW WHAT YOUR CHILDREN DO

Again, suppose that we want to execute an external command (execve
again)
We still want to continue the execution of the main program
But only after the run of the external command is complete (synchronous
as opposed to asynchronous execution)
int run_it (char* command, char* argv [], char* envp[]) {

int childp = fork();

int status;

if (childp == 0) { // child

execve(command, argv, envp);

}

else { // parent

waitpid(childp, &status,0);

}

return status;

}

Concurrency (S. D. Bruda) CS 464/564, Fall 2023 6 / 8

WHY CREATE PROCESSES?

We will build eventually servers (programs that serve requests from
clients)
Instead of serving requests from one client at a time, our servers will
handle many clients quasi-simultaneously
loop

forever

listen for clients
a client requests connectionif

child processif

fork

handle client
terminate

then

then

. . . or even many types of clients

forever

listen for clients
if

child processif then

fork

launch server
terminate

a client of type x requests connection then

x execve

loop

Concurrency (S. D. Bruda) CS 464/564, Fall 2023 7 / 8

WHY CREATE PROCESSES? (CONT’D)

loop
Parent

Three processes running concurrently

on the server’s machine

connect

connect do stuff done

donedo stuff

do stuff

do stuff

x

x

x

x

Client 1

Client 2

fo
rk

fo
rk

Child 1

Child 2

Server

Time

Concurrency (S. D. Bruda) CS 464/564, Fall 2023 8 / 8

