DOING MORE THINGS SIMULTANEOQUSLY

@ Concurrency can be achieved by multiprocessing and time-sharing
@ Best definition for concurrency: apparently simultaneous execution

Concu rrency @ Concurrency is fundamental to distributed computing

o Multiprocessing: many machines run simultaneously many programs

e Time-sharing: a single machine runs multiple programs in an interleaved
fashion (context switching)

@ Whether things run in a time-share fashion or on a multiprocessor
computer is immaterial; the observable behaviour is the same
@ The fundamental unit of computation: a process
@ A process consists of an address space and one (or more) threads of
execution (i.e., instruction pointers)
o Each process receives a separate copy of all the variables (address space)
o Each thread in a process have a copy of local variables (stack) but they all
share the rest of the address space (global variables, heap)

Stefan D. Bruda

CS 464/564, Fall 2023

Concurrency (S. D. Bruda) CS 464/564, Fall 2023 1/8

PROCESS CREATION) PARENTS AND CHILDREN
@ We now create singly threaded to To other side. get the

processes: Why did the ml;ltlthreaded chicken @ The call to fork () duplicates the current process; both processes

#include <iostream.h> cross the road? continue execution from the instruction following the call to fork ()

#include <sys/types.h> other to side. To the get . . ;

#include <umistd h> @ The initial process is the parent, and the newly created copy is called a

child

int main (int argc, char** argv) { @ Processes are identified in a Unix system by a unique process identifier
int i; (or PID, unsigned integer)
int sum = 0; @ fork() returns two different integers in the child and parent processes
fork() ; o In the child process fork() returns zero

’ o In the parent process fork() returns the PID of the newly created child
for (int i=1: i<10000; i++) { @ So we can provide different code for the parent and the child, by surrounding
cum = sum + i: ’ them in appropriate conditional statements

3

cout << "\nI computed " << sum << "\n";

Concurrency (S. D. Bruda) CS 464/564, Fall 2023 2/8 Concurrency (S. D. Bruda) CS 464/564, Fall 2023 3/8

DIVERGING PROCESSES

#include <iostream.h>
#include <sys/types.h>
#include <unistd.h>

int main (int argc, char** argv) {
int i; int sum = 0; int pid;

pid = fork();
for (int i=1; i<10000; i++) {
if (pid == 0)
cout << "+";
else
cout << "-";
cout.flush();
sum = sum + i;
}
if (pid == 0)
cout << "\n[Child] I computed " << sum << "\n";
else
cout << "\n[Parent] I computed " << sum << "\n";

// child process
// parent process

// both processes

}

Concurrency (S. D. Bruda)

KNOW WHAT YOUR CHILDREN DO

CS 464/564, Fall 2023 4/8

@ Again, suppose that we want to execute an external command (execve

again)

@ We still want to continue the execution of the main program

@ But only after the run of the external command is complete (synchronous

as opposed to asynchronous execution)

int run_it (char* command, char* argv [], char* envp[]) {

int childp = fork();
int status;

if (childp == 0) { // child
execve (command, argv, envp);

+

else { // parent
waitpid(childp, &status,0);

}

return status;

}

Concurrency (S. D. Bruda)

CS 464/564, Fall 2023 6/8

CHILDREN DOING COMPLETELY DIFFERENT STUFF

@ The call execve replaces completely the current process with another

executable
e The arguments are the name of the command to execute, then two

null-terminated arrays of strings containing the command line arguments

and the environment, similar to the ones received by the function main

@ Suppose now that we want to run an external command (so we use

execve), but also we want to continue the execution of the original
program

@ We use a combination of fork and execve:

Concurrency (S. D. Bruda)

int childp = fork();
if (childp == 0) { // child
execve (command, argv, envp);
}
else { // parent
// code that continues our program

3

WHY CREATE PROCESSES?

@ We will build eventually servers (programs that serve requests from

Concurrency (S. D. Bruda)

clients)

Instead of serving requests from one client at a time, our servers will

handle many clients quasi-simultaneously
loop

listen for clients

if a client requests connection then

ﬁ fork

if child process then
handle client
terminate

forever

...or even many types of clients
loop

listen for clients

if aclient of type x requests connection then

ﬁ fork

if child process then
launch server x i .-+
terminate ’

forever

8

0

CS 464/564, Fall 2023 5/8

CS 464/564, Fall 2023 7/8

WHY CREATE PROCESSES? (CONT'D)

77777777777777777777 (forjeij Client 1
Client 2
IV B T .
i loop ‘
X Child 1
Child 2

Time
Three processes running concurrently
on the server's machine

Concurrency (S. D. Bruda) CS 464/564, Fall 2023 8/8

